Chen, Pei-Yu and Santamaria, Selene Baez and de Boer, Maaike H.T. and den Hengst, Floris and Kamphorst, Bart A. and Smit,Quirine and Wang, Shihan and Wolff, Johanna,
“Intelligent Support Systems for Lifestyle Change: Integrating Dialogue, Information Extraction, and Reasoning”
HHAI 2024: Hybrid Human AI Systems for the Social Good, IOS Press (2024)
doi bib
den Hengst, Floris and Wolter, Ralf and Altmeyer, Patrick and Kaygan, Arda,
“Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition”
Findings of the Association for Computational Linguistics: NAACL 2024, ACL (2024)
url pdf bib
Visbeek, Samantha and Acar, Erman and den Hengst, Floris
“Explainable Fraud Detection with Deep Symbolic Classification”
Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, Spring (2024)
doi pdf bib preprint
den Hengst, Floris and Otten, Martijn and Elbers, Paul and François-Lavet, Vincent and van
Harmelen, Frank and Hoogendoorn, Mark,
“Guideline-informed reinforcement learning for mechanical ventilation in critical care”
Artificial Intelligence in Medicine, Elsevier (2023)
doi bib
pdf
Otten, Martijn and Jagesar, Ameet R. and Dam, Tariq A. and Biesheuvel, Laurens A. and den Hengst, Floris and Ziesemer, Kirsten A. and Thoral, Patrick J. and de Grooth, Harm-Jan and Girbes, Armand R.J. and François-Lavet, Vincent and Hoogendoorn, Mark and Elbers, Paul W.G.,
“Does Reinforcement Learning Improve Outcomes for Critically Ill Patients? A Systematic Review and Level-of-Readiness Assessment”
Critical Care Medicine, LWW (2023)
doi bib
den Hengst, Floris
“Learning to Behave: Reinforcement Learning in Human Contexts”.
PhD. thesis
doi pdf cover bib
Petrescu, Stefan and den Hengst, Floris and Uta, Alexandru and Rellermeyer, Jan S.,
“Log Parsing Evaluation in the Era of Modern Software Systems”
The 34th IEEE International Symposium on Software Reliability Engineering
doi preprint bib
Smit, Yannick and den Hengst, Floris and Bhulai, Sandjai and Mehdad, Ehsan,
“Strategic Workforce Planning with Deep Reinforcement Learning”.
Machine Learning, Optimization, and Data Science (2022)
doi pdf preprint bib
den Hengst, Floris and François-Lavet, Vincent and Hoogendoorn, Mark and Van Harmelen, Frank,
“Reinforcement Learning with Option Machines”.
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2909-2915 (2022)
doi pdf preprint bib
den Hengst, Floris and François-Lavet, Vincent and Hoogendoorn, Mark and Van Harmelen, Frank,
“Planning for potential: efficient safe reinforcement learning”.
Machine Learning, Springer (2022)
Presented at BeNeRL 2022
doi bib pdf
den Hengst, Floris and Grua, Eoin Martino and el Hassouni, Ali and Hoogendoorn, Mark,
“Reinforcement Learning for Personalization: A Systematic Literature Review”.
Data Science (2020)
Presented at RL for Real Life conference 2020, presented at BNAIC 2020
doi bib
Van Zeelt, Mickey and den Hengst, Floris and Hashemi, Seyyed Hadi,
“Collecting High Quality Dialogue User Satisfaction Ratings with Third-Party Annotators.”
Proceedings of the 2020 Conference on Human Information Interaction and Retrieval,
363-367 (2020)
doi bib
den Hengst, Floris and Hoogendoorn, Mark and Van Harmelen, Frank and Bosman, Joost,
“Reinforcement Learning for Personalized Dialogue Management”. 2019 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), 59-76 (2019)
doi bib pdf
Floris den Hengst - Detecting Interesting Outliers: Active Learning for Anomaly Detection,
Master’s thesis Artificial Intelligence, Vrije Universiteit Amsterdam (2016)
pdf