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Abstract
Reinforcement learning (RL) is a powerful frame-
work for learning complex behaviors, but lacks
adoption in many settings due to sample size re-
quirements. We introduce a framework for in-
creasing sample efficiency of RL algorithms. Our
approach focuses on optimizing environment re-
wards with high-level instructions. These are mod-
eled as a high-level controller over temporally ex-
tended actions known as options. These options can
be looped, interleaved and partially ordered with
a rich language for high-level instructions. Cru-
cially, the instructions may be underspecified in the
sense that following them does not guarantee high
reward in the environment. We present an algo-
rithm for control with these so-called option ma-
chines (OMs), discuss option selection for the par-
tially ordered case and describe an algorithm for
learning with OMs. We compare our approach in
zero-shot, single- and multi-task settings in an envi-
ronment with fully specified and underspecified in-
structions. We find that OMs perform significantly
better than or comparable to the state-of-art in all
environments and learning settings.

1 Introduction
Reinforcement Learning (RL) is a powerful framework for
learning complex behaviors. Sample effiency, however, re-
mains an open challenge in RL and prevents adoption in many
real-world settings [Dulac-Arnold et al., 2019; den Hengst et
al., 2020]. Sample efficiency is often improved with knowl-
edge of a good solution, e.g. with demonstrations, increas-
ingly complex tasks [Bengio et al., 2009], intermediate re-
wards [Ng et al., 1999] and by decomposing the task into
subtasks that are easier to learn [Dietterich, 2000].

Recently, approaches have become popular for making RL
more sample efficient with high-level symbolic knowledge.
These methods combine the clear semantics, verifiability and
well-understood compositional and computational character-
istics of symbolic methods at a high level of abstraction with
the power and flexibility of RL at large, low-level action and
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state spaces [Yang et al., 2018; Toro Icarte et al., 2018b;
Toro Icarte et al., 2018a; Camacho et al., 2019; Lyu et al.,
2019; Illanes et al., 2020; den Hengst et al., 2022]. These
works demonstrate that symbolic instructions form a com-
pelling complement to RL. A drawback of existing methods,
however, is that they require the instructions to fully define
the task at hand. Specifically, these assume that high rewards
are always obtained if the instructions are followed. Such
rich instructions, however, may be hard to attain in practice.
Firstly, knowledge of a good solution may be tacit. Secondly,
the solution space may be so large that only partial instruc-
tions are feasible, e.g. chess opening and closing strategies.
Finally, the quality of a solution may not be known a priori,
e.g. when it depends on the agents’ capabilities or user pref-
erences.

We therefore target a setting in which an agent is to opti-
mize an environment reward with the help of underspecified
instructions. These instructions define a solution at a high
level of abstraction and, crucially, do not define the task at
hand completely: following these instructions does not guar-
antee a high environment reward. Such instructions are abun-
dant in a vast range of domains, including driving directions
and clinical guidelines. In this paper, we propose and evalu-
ate a framework for sample-efficient RL with underspecified
instructions.

The framework consists of a high-level controller over a
set of temporally extended actions known as options [Sutton
et al., 1999] and uses a formalism that allows for looping,
interleaving and partial ordering of such options. The poli-
cies for these options are trained to optimize an environment
return and can be reused both within a single task and across
tasks. We compare our approach with the state of the art on an
environment with instructions that fully specify the task and
an environment in which the instructions are underspecified.

In summary, the contributions of this paper are:
• the first approach to increase sample efficiency of an RL

agent with high-level and underspecified instructions;
• methods for specification, control and learning for op-

tions with rich initiation and termination conditions;
• intuitive instruction semantics that allow reuse of op-

tions both within a single task and across multiple tasks;
• state of the art performance in a single-task setting and

significant outperformance of the state of the art in zero-



shot and multi-task settings across environments with
fully specified and underspecified instructions.

After comparing our approach to related work and introduc-
ing preliminaries, we introduce our framework in Section 4.
We detail how instructions are formalized and used for con-
trol, then present a learning algorithm in Section 5, an exper-
imental evaluation in Section 6 and a discussion in Section 7.

2 Related Work
The literature on improving RL sample efficiency is vast and
contains many task- or domain-specific approaches. We limit
the discussion here to generic methods for expressing and
supplying knowledge to the learner.

2.1 Hierarchical RL
Our work uses the expressive formalism of finite state trans-
ducers (FSTs) to specify initiation and termination conditions
of temporally extended actions and can hence be seen an ex-
tension of the options framework [Sutton et al., 1999], see
Section 3.1. Our framework specifically proposes the use of
a, to the best of our knowledge, novel kind of option with non-
Markovian initiation and termination conditions, see Sec-
tion 4.3. In the context of hierarchical RL, both sequential
[Singh, 1992] and subroutine-based [Dietterich, 2000] for-
malisms have been used to define options. Unlike our pro-
posed approach, these formalisms do not allow for interleav-
ing, looping or partial ordering of options.

2.2 Classical Planning and RL
High-level control with classical planning and primitive con-
trol with RL goes back to Ryan [2002] who proposed to use
plans obtained from high-level teleo-operators mapping states
to suitable behaviors. Another early example used STRIPS
planning and was extended with reward shaping [Grounds
and Kudenko, 2005; Grzes and Kudenko, 2008]. More re-
cently, Yang et al. [2018] and Lyu et al. [2019] proposed to
use an action language from which subtasks are derived. So-
lutions to these are combined to solve new tasks and are opti-
mized using intrinsic rewards. Illanes et al. [2020] introduced
the problem of ‘taskable RL’ and propose a solution based
on decomposition. Unfortunately, these works all require a
planning goal that specifies the task completely and requires
a planning model whereas our approach is robust against un-
derspecified instructions and relies on instructions formalized
as an FST which can be specified as e.g. LTL constraints.

2.3 Automata, Temporal Logics and RL
The first to recognize that automata can drastically improve
RL sample efficiency were Parr and Russell [1998]. They
proposed a ‘hierarchy of abstract machines’ to constrain
the agent action space. This work was extended by itera-
tively refining the automata with data [Leonetti et al., 2012;
Leonetti et al., 2016]. These automata operate on primitive
actions and have no abstraction over actions.

Another line of work proposes to specify tasks in tempo-
ral logic formulas. These formulas are then converted into a
reward function with the aim for the agent is to learn how to
satisfy the formula [Sadigh et al., 2014; Fu and Topcu, 2014;

Li et al., 2017; Brafman et al., 2018; den Hengst et al., 2022].
These works require the full task to be specified whereas we
target optimizing an unknown environment reward function
using possibly underspecified instructions.

Some works consider decomposition of tasks specified in
a temporal logic formula with the option framework. An-
dreas et al.[2017] introduced an approach for learning mod-
ular behaviors over sequences of subtasks. This approach
optimizes an environment reward but does not support loop-
ing or interleaving subtasks and requires learning when to
switch to a new subtask. Toro Icarte et al. [2018a] sim-
ilarly learn a policy per subtask, but infer subtasks from
an LTL formula using LTL progression. The same au-
thors propose to learn a policy per state of an automaton
representation of the formula [Toro Icarte et al., 2018b;
Camacho et al., 2019]. These approaches specify temporally
extended behaviors implicitly, i.e. there is no transparency
at the meta-controller level, whereas we use explicitly named
options. Reuse of options is therefore limited and their ap-
proach may not be applicable to certain zero-shot settings.
On top of this, many policies may need to be learned, as the
size of the automaton may grow exponentially in the size of
the formula. Most importantly, these approaches also require
that the entire task is specified upfront, whereas we target op-
timizing an unknown environment reward with possibly un-
derspecified instructions.

3 Preliminaries
3.1 Reinforcement Learning
The RL framework can be used to maximize the amount
of collected rewards in an environment by selecting an ac-
tion at each time step [Sutton and Barto, 2018]. Such prob-
lems are formalized as a Markov Decision Problem (MDP)
M : ⟨S,A, T,R, γ, S0⟩ with a set of environment states
S = {s1, . . . , sn}, a set of agent actions A = {a1, . . . , am},
a probabilistic transition function T : S × A → P(S) func-
tion R : S × A × S → [Rmin, Rmax] with Rmin, Rmax ∈ R,
a discount factor γ ∈ [0, 1) to balance current and future re-
wards and S0 a distribution of initial states at time step t = 0.
At each time step t, the agent observes an environment state
st and performs some action at ∼ π ∈ Π : S → P(A) and
collects reward rt = R(st, at, st+1). An optimal policy π∗

yields the highest obtainable discounted cumulative rewards.
For complex tasks it may be difficult to discover any positive
rewards. The agent can be given progressively more complex
tasks known as curriculum learning [Bengio et al., 2009].

Actor-Critic Methods
Actor-critic (AC) methods optimize a set of weights θ on
which the policy is conditioned: a ∼ π(s, ·;θ) [Williams,
1992; Konda and Tsitsiklis, 2000]. This actor is itself op-
timized with an estimated state-value v̂π(s;w), conditioned
on a second set of weights w referred to as the critic. Both
sets of weights can then be optimized with the following up-
date rules for given step sizes αθ, αw > 0 and a given in-
teraction with the environment (st, at, rt, st+1) and resulting
return g =

∑∞
j=t γ

j−tR(sj , aj , sj+1) at time t:

w← w + αw(∇v̂(st;w)
)(
g − v̂(st;w)

)
(1)
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Figure 1: Option Machine for the pie recipe from Example 1 with environment events
{smooth, pie-plate-filled, golden, topping-applied} and options {mix, fill, bake, make-topping, pantry-topping}.

θ ← θ + αθ
(
∇logπ(st, at;θ)

)
v̂(st;w) (2)

Options
The option framework introduces an abstraction over the
space of actions [Sutton et al., 1999]. The agent selects a
‘primitive’ action a ∈ A or ‘multi-step’ action at each time
step. These options are formalized as a tuple ⟨I, π, β⟩ where
I : S → {0, 1} a function indicating in which states the op-
tion can be initiated, π a policy that controls the agent when
the option is active and β : S → {0, 1} a termination function
that determines when the option becomes inactive. If the op-
tions are trained with an actor-critic method then each option
o can have its own actor θo and critic wo. We denote the sets
of all actors and critics for all options as Θ and W.

3.2 Finite State Transducers
Transducers are a generalization of finite state machines for
control and define a mapping between two different types of
information. We focus on deterministic FSTs whose output
is determined by its current state and input, known in lit-
erature as a Mealy machine. We define a FST as a tuple
φ : ⟨Σ,Ω, Q, I, F, δ⟩ where Σ is a finite input alphabet, Ω
a finite output alphabet, Q a finite set of states, I ⊆ Q the
set of initial states, F ⊆ Q the set of terminal or final states,
δ : Q × (Σ ∪ {ϵ}) → Q × (Ω ∪ {ϵ}) a transition functions
where ϵ the empty string [Mealy, 1955]. A FST can be spec-
ified in a temporal logic such as LTL and then converted to a
FST with out-of-the-box tools [Michaud and Colange, 2018].

4 The Option Machine Framework
In this section we introduce a framework for using underspec-
ified instructions in RL. Specifications for Option Machines
(OMs) can be underspecified in two ways. Firstly, the instruc-
tions specify what to do at a high level of abstraction rather
than at the level of primitive actions. Secondly, a policy fol-
lowing the instructions in OMs is not assumed to always get
high environment rewards. This contrasts with most related
works, in which following the instructions is equated to high
environment rewards. OMs, in contrast, use the environment
reward as the canonical definition of the task and leverage
instructions for reuse of obtained knowledge, improved ex-
ploration and better reward attribution.
Example 1. A recipe gives instructions for a particular type
of pie. While each type of pie is a separate task, recipes refer
to common steps such as mixing ingredients, pouring, baking
etc. Solutions for these steps can be reused across recipes. A

recipe may be underspecified and not guarantee a tasty result
as baking requires more knowledge than just the recipes.

We now introduce OMs formally from the perspective of
a curriculum of tasks. An OM curriculum is defined as a tu-
ple C : ⟨S,A, T, γ,R, P,Φ, L⟩ where S,A, T, γ are defined
as usual in RL, see Section 3.1. Tasks R are formalized as
a set of environment reward functions, P a probability distri-
bution over tasksR and instructions Φ as a set of FSTs. Each
φi ∈ Φ corresponds to a particular task Ri and has some
Σi of environment events as its input alphabet. We assume
that a function for detecting these events L : S →

⋃
Φ Σi is

available. The main loop can be found in Algorithm 1 and
contains components for control and learning.

4.1 Instructions as an Option Machine
Our approach uses high-level instructions for a given task. In
particular, instructions define traces of high-level behaviors
based on high-level descriptions of environment states. This
allows for the intuitive formalization of e.g. a recipe.
Example 1. (cont.) A recipe ‘mix ingredients until smooth,
fill pie plate and bake in oven at 180◦C until golden. Apply
a home-made topping or use a topping from the pantry to
finalize the pie.’ See Figure 1 for an example OM.

High-level descriptions of states consist of events that the
agent can detect in the environment. These are formalized a
set of atomic propositions AP I , to which some truth value
in Σ : 2AP I

can be assigned. Σ corresponds to the input
alphabet for the FST associated with the current task. We
assume that some function L : S → Σ for detecting these
events in states is available, e.g. as a handcrafted or pretrained
component. We return to our running example before we look
at how events are used for high-level control.
Example 1. (cont.) Events {smooth, pie-plate-filled,
golden} can be identified from pixel-level states.

High-level Behaviors are actions that take multiple time
steps and can be reused across tasks. These are formal-
ized as options and denoted with a set of atomic proposi-
tions APO, to which some truth values in Ω : 2APO

can
be assigned. At each time step, the permissible options in
an OM are determined by this FST output. The current FST
state qt and detected events L(st) trigger some FST transition
δ
(
qt, L(st)

)
which produces a new FST state qt+1 and an out-

put ωt ∈ Ω ∪ ϵ. The ‘true’ propositions in ωt are interpreted
as the set of permissible options at that particular time step
and are denoted Ot ⊆ APO. An OM consists of policies as-
sociated with options, a FST that specifies which options are



permissible and a mechanism to select from these. We dis-
cuss selection mechanisms in the next section. If no options
are explicitly defined, then this is represented by the empty
string Ot = {ϵ}. We treat this is a particular output for which
the agent uses a dedicated fallback option.

Example 1. (cont.) Figure 1 shows that mix is the only
permissible option until the event smooth is detected. From
this point onward, the option fill is permissible until the
event pie-plate-filled becomes true etc. When the event
golden has been detected, the two options make-topping
and pantry-topping become permissible simultaneously.

4.2 Control with Option Machines
Control in the OM framework assumes a given task Ri with
corresponding FST φi and has a two-level structure, see Al-
gorithm 2. At the upper, meta-controller level, a suitable op-
tion is selected using φi. The policy for this option is then
executed at the lower level and generates a primitive action
at ∈ A to be executed by the agent. In particular, an op-
tion is selected based on the FST output. This output defines
one or multiple permissible options Ot. For now, we simply
assume these policies to exist and leave the details on how
these are optimized from interactions with the environment
to Section 5.

Example 1. (cont.) It may not be clear to a recipe author
whether their audience has the right actuators to create a
topping. Further, it may not be known whether e.g. pantry
toppings are available.

We compare three approaches to select an option from Ot.
The first approach assumes a total ordering over all options
APO which fixes the selected option as the highest-ranked
permissible option in Ot. This ‘fixed’ approach does not in-
corporate learning in the upper level of control but it comes
with the benefit of stability of agent behavior. The other
two approaches do incorporate learning in the upper level of
decision-making and both use option-specific state-value es-
timates v̂(s;wo). The first of these simply selects an option o
from the permissible options Ot greedily:

f(Ot, s,W) = arg max
o∈Ot

v̂(s;wo) (3)

The greedy approach, however, may result in frequent
switches between options, e.g. when estimates are inaccu-
rate during early phases of learning or when all permissible
options yield a similar return. To mitigate this, we introduce
a ‘sticky’ mechanism that defaults to selecting the previous
option ot−1 if it is permissible and greedily otherwise:

f(Ot, s, ot−1,W) =

{
ot−1 if ot−1 ∈ Ot

arg max
o∈Ot

v̂(s;wo) otherwise

(4)

4.3 Reusable Policies and Non-Markovian Options
Policies in the OM framework have names APO and can
therefore easily be reused within a task or across tasks. For
example, the policy for mixing ingredients can be used for
mixing both the dough and the filling in a single cake recipe.

Algorithm 1 Main loop

Input: curriculum C : ⟨S,A, T, γ,R, P,Φ, L⟩,
parameterizations π(·; s,θ) and v̂(s;w)
Parameters: learning steps N , batch size D
Output: set of actors Θ and set of critics W

1: i← 0, D ← ∅, Θ← ∅, W← ∅
2: ∀o ∈ APO ∪ ϵ, add random weights θo to Θ, wo to W.
3: while i < N do
4: while |D| < D do
5: sample (R ∈ R, φ ∈ Φ) ∼ P .
6: d← rollout for task R and instructions φ. {Alg. 2}
7: D ← D ∪ d.
8: end while
9: update parameters Θ,W with D. {Alg. 3}

10: i← i+ 1.
11: end while
12: return Θ,W.

Algorithm 2 Control with an Option Machine

Input: finite-state transducer φ, actors Θ, critics W,
labelling L : S → Σ
Parameters: shaping reward ρ ≥ 0
Output: episode d

1: initialize o, d← ∅, q ← q0 ∈ φ, observe s.
2: while q and s are not terminal do
3: (q′, O)← δ(q, L(s)).
4: o← select from O. {Equation 3 or 4}
5: perform action a ∼ π(·|s,θo).
6: observe r and s′.
7: append (s, o, q, a, r, s′) to d.
8: s← s′, q ← q′.
9: end while

10: return d.

Additionally, multiple recipes may require mixing dough.
Named options enable reuse of policies in e.g. a zero-shot
setting where an unseen task can be solved by combining pre-
viously encountered options.

The initiation and termination condition of options in our
framework are defined by the FST and based on the history of
observed events L(s0), L(s1), . . . , L(st). These conditions
are therefore non-Markovian. This enables powerful yet intu-
itive control, including looping and interleaving of options.

5 Learning with Option Machines
In this section we look at the problem of learning optimal
policies for options from environment interactions generated
by a sequence of these options. A key challenge here is to
attribute rewards to the appropriate option. If an option was
in control at a particular point in time, should future rewards
be attributed to this option or not? First, however, we detail
how instructions in OMs can be used to guide the agent with
shaping rewards.

Shaping rewards are small positive (or negative) interme-
diate rewards for actions or states that are promising (or to be



Algorithm 3 Learning with Option Machines

Input: actors Θ, critics W, episodes D
Parameters: learning rates αθ,w, shaping reward ρ, discount
factor γ
Output: updated actors Θ and critics W

1: for all d ∈ D do
2: d′ ← reverse episode d.
3: q′ ← q ∈ d′[0].
4: o′ ← o ∈ d′[0]. {option to train}
5: ge ← 0. {environment return}
6: gs ← 0. {shaping return}
7: for all (s, o, q, a, r, s′) ∈ d′ do
8: if q ̸= q′ then
9: o′ ← o. {update option to train}

10: gs ← ρ. {add shaping rewards}
11: else
12: gs ← γgs. {discount shaping return}
13: end if
14: ge ← γge + r. {update environment return}
15: g ← ge + gs. {total return}
16: θo′

+← αθ
(
∇logπ(a|s,θo′)

)(
g − v̂(s,wo′)

)
.

17: wo′
+← αw(∇v̂(s,wo′)

)(
g − v̂(s,wo′)

)
.

18: end for
19: end for
20: return Θ,W

avoided). These can be defined based on prior knowledge of
a good solution. For example, a small positive reward can be
given for solving a subtask such as successfully baking a pie
crust. The usage of the FST formalism gives a very natural
way to delineate subtasks using FST states. In particular, if
the FST transitions from some state q to another state q′ ̸= q,
a preset shaping reward ρ can be applied to inform the agent
that it is progressing according to the instructions. Shaping
rewards can be defined naturally in our approach.

We now turn to the problem of attributing rewards to op-
tions and propose a method to address it using FST state in-
formation. We first consider the simple case where a single
option o was active while visiting a FST state q. In this case,
a transition from q to another state q′ ̸= q must have been
caused by the actions sampled according to that options’ pol-
icy θo. Hence, future rewards should be used to update that
options’ policy. The case of multiple options executing be-
fore a transition to a new state, however, poses a problem.
Reaching the event that triggers this transition requires dif-
ferent policies for the used options. Hence, these interactions
should not be used to update both options policies naively.
We propose to use all interactions for updating only the pol-
icy of the last option executing in a FST state instead.

Example 1. (cont.) In Figure 1, a single option will exe-
cute while visiting states {q0, q1, q2}. During visits to q3 both
make-topping and pantry-topping may execute (although
not at the same time) until the topping-applied event is
observed. If pantry-topping last executes before the event
topping-applied is observed then this option’s policy will
be updated during learning.

Option Machines

Env. Setting Sketch Fixed Greedy Sticky

maze isolation 0.09 0.60 N/A N/Aholdout 0.49 0.54
craft isolation 0.03 0.90 0.74 0.73

holdout 0.05 0.86 0.13 0.22

Table 1: Zero-shot total environment reward on 1K test episodes.
Bold denotes significant best (Mann-Whitney U, p < 0.01).

Algorithm 3 lists a learning algorithm that implements
these ideas on reward shaping and reward attribution. First,
the final automaton state and active option are extracted and
both the discounted cumulative environment return ge and
shaping return gs are initialized (lines 1-6). In lines 8-12,
the last executing option o in a particular FST state q is set as
the target option o′ to optimize and the shaping rewards are
calculated. These are added to the total reward (lines 14-15)
and used to update the actor and critic parameters (lines 16-
17). The learning algorithm thus leverages FST state infor-
mation in two ways: firstly, shaping rewards can be supplied
to promote exploration and reinforce subtask completion and
secondly, interactions are mapped to a single option to ensure
that the parameters of the appropriate option are updated.

6 Experiments
In this section, we provide an empirical evaluation of OMs in
an environment with both fully specified and underspecified
instructions. We evaluate OMs in single-task, multi-task and
two zero-shot settings to answer the research questions:

1. Do the instructions improve sample efficiency?
2. What are effects of named options and reward shaping?
3. Which option selection method to use?
We include versions of OMs for each of the option selec-

tion mechanisms described in Section 4.2: OM-fixed selects
based on an arbitrarily fixed order, OM-greedy selects accord-
ing to Equation 3 and OM-sticky according to Equation 4.

6.1 Baselines
We compare option machines to three state-of-the-art ap-
proaches. Firstly, we include the ‘sketch’-based approach
proposed by Andreas et al.[2017]. This approach targets the
multi-task setting, uses a sequence of subtasks rather than the
richer representation proposed here and learns option termi-
nation conditions. Secondly, we compare to reward machines
(RM) by Icarte et al. [2018b] which assume that the instruc-
tions specify the task fully and require that the training and
evaluation subtasks use the same events. This is not the case
for the tasks included here and we therefore do not include
RM in the zero-shot setting. For all algorithms, we use AC
as the base learner and we include a vanilla AC baseline per
task in the single-task setting, denoted ‘RL’.

6.2 Experimental Setup
Two benchmark environments by [Andreas et al., 2017] are
used to evaluate the approach. In the ‘craft’ environment,
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Figure 2: Total environment rewards per episode in the single- and multi-task setting on two environments.

items can be obtained by collecting resources such as wood
and iron and combining them at workshop locations. In-
structions may specify multiple permissible options simulta-
neously or may fully specify tasks. In the ‘maze’ environ-
ment, the agent must navigate a series of rooms with doors.
An event detector describes whether the agent is in a door
or not. Critically, it does not differentiate doors leading to
the desired room from other doors. As a result, instructions
are underspecified. Furthermore, instructions only permit one
option at a time. We therefore do not include OM-greedy and
OM-sticky in this environment.

An existing curriculum learning setup was used for multi-
task learning [Andreas et al., 2017]. Initially, only tasks as-
sociated with two options are presented. Once the mean re-
ward on these reaches a threshold of 0.8, this limit is incre-
mented. Tasks within this limit are sampled inversely propor-
tional to the obtained reward. Results were selected with a
grid search over hyperparameters. Shaping reward hyperpa-
rameters ρ = 0 and ρ = 0.1 were selected for the maze and
craft environment respectively. We report averages over five
random seeds. A detailed description of the environments,
tasks, hyperparameters etc. can be found in the Appendix.

6.3 Results
Single-task Results
The two leftmost graphs in Figure 2 show the single-task re-
sults on all tasks consisting of more than two options. The
maze environment proves too challenging. The reason is its
inherent exploration problem which cannot be mitigated by
the instructions. Following these does not guarantee solving
the task and hence shaping rewards do not help. In the craft
environment, shaping is useful: the RM and OM-fixed ap-
proaches significantly outperform all others. The usage of
named options has negligible effects as RM and OM-fixed
perform similarly. Finally, we see a slight advantage of using
the sticky option selection over its greedy counterpart.

Multi-task Results
The two rightmost graphs in Figure 2 show that the instruc-
tions improve sample efficiency as our approach significantly
outperforms all baselines. In the maze environment, this can
all be attributed to the usage of named options since there are
no shaping rewards with ρ = 0. Also, note that RMs fail to
perform in the multi-task setting because they use the instruc-
tions as the full specification of the task. In the craft environ-
ment, the instructions do fully specify the task and shaping
rewards increase sample efficiency. A comparison between

OM-fixed and RM indicates that the usage of named options
increases sample efficiency significantly. Again, we see that
OM-fixed outperforms the other OM variants and that using
sticky option selection provides a slight benefit.

Zero-shot Results
We evaluate applicable approaches in two zero-shot settings.
In the first setting, policies for all options are trained in isola-
tion and then evaluated on tasks composed of these options.
We include all tasks here. In the second setting, policies are
trained on a set of training tasks and then evaluated on two
unseen, held out, tasks. For OM-based approaches, we exe-
cute Algorithm 2 in both settings. Table 1 shows that all of
the OM versions significantly outperform the baseline in both
environments. OM-fixed outperforms all OM versions. The
difference here is striking in the holdout case.

The holdout setting is challenging since policies are opti-
mized in the context of tasks other than the evaluation task.
As a result, a policy associated with some option o is pos-
itively reinforced if it completes a subtask associated with a
later option o′. If this subtask is not part of the evaluation task,
completing it may harm performance. It could take time and
affect later subtasks if these are not commutative. OM-fixed
is less susceptible to this failure mode then the other vari-
ants, as it uses the same delineation across all episodes. This
does not show in the ‘isolation’ training setting where the
greedy and sticky variants perform significantly better than
their counterparts trained in the holdout setting.

7 Discussion
We proposed a framework for sample efficient RL with under-
specified instructions. These are represented with powerful
and intuitive FSTs as a natural way to define shaping rewards
and use named options for the reuse of learned behaviors. Ex-
perimental evaluations show state of the art performance in a
single-task setting and significant outperformance of the state
of the art in zero-shot and multi-task settings across environ-
ments with fully specified and with underspecified instruc-
tions. We have found indications that shaping rewards should
not be used when instructions do not cover the task at hand
completely but that named options provide a significant ben-
efit. Finally, results indicate that named options significantly
increase performance in the multi-task and zero-shot settings.

Future work includes the development of a calculus of in-
structions for RL with FST operations and the study of ways
to derive OMs from interactions to communicate learned
strategies with other agents and humans.
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Appendices
Appendix A: Details Experimental Setup
The implementation of the environments and the ‘sketch’ baseline used in all experiments is the same as the one described by
Andreas et al.. We include a list of all parameters and a description of the setup and the environments here for completeness.
Instructions (see below) were defined in LTL and then converted into FST meta-controllers with the ltlsynt tool by [Michaud
and Colange, 2018] and then implemented in Python. In all of our experiments, we implement each policy as a feedforward
neural network with ReLU activations and critics as a linear function of the state. Both are optimized with the RMSProp
optimizer. Table 2 lists all (hyper)parameters used.

Parameter Value(s) Description
step size 0.001 RMSProp optimization step size.

γ 0.9 Parameter to balance immediate and long-term rewards.
D 2000 Training algorithm batch size.
ρ {0, 0.1} Intrinsic or shaping rewards.

seeds {0, 1, 2, 3, 4} Initialization of the pseudo-random number generator.

Table 2: Parameters used in all experiments.

Craft Environment
The deterministic ‘craft’ environment is a 10 × 10 grid in which the agent senses the (x, y) position of locations of interest
such as resources and workshops, relative to its own location. The state representation for this environment is a vector of
dimensionality 1075, consisting of indicator parameters for each possible item in the agent inventory, indicator parameters for
the position of locations of interest relative to the agents position and indicator parameters for the direction the agent is facing.
The action space is defined as {up, down, left, right, use} where the first four always move the agent in the particular direction
in the grid. Options are terminated based on instructions or after fifteen time steps and episodes are terminated after 100 time
steps.

Task LTL specification
Plank ((get-wood ∧ ¬w0))W(wood ∨ plank)) ∧ (Fwood =⇒ F(w0Wplank))
Stick ((get-wood ∧ ¬w1)W(wood ∨ stick)) ∧ (Fwood =⇒ F(w1Wstick))
Cloth ((get-grass ∧ ¬w2)W(grass ∨ cloth)) ∧ (Fgrass =⇒ F(w2Wcloth))
Rope ((get-grass ∧ ¬w0)W(grass ∨ rope)) ∧ (Fgrass =⇒ F(w0Wrope))

Bridge G(¬(w2∧get-grass)∧¬(w2∧get-iron))∧(get-woodWwood)∧(get-ironWiron)∧((Fwood∧
Firon) =⇒ F(w2Wbridge)

Bed G(¬(w1 ∧ get-wood) ∧ ¬(w1 ∧ get-grass) ∧ ¬(w1 ∧ w0)) ∧ (get-grassWgrass) ∧
(get-woodWwood) ∧ (F(wood) =⇒ (w0Wplank)) ∧ ((Fwood ∧ Fplank ∧ Fgrass) =⇒
F(w1Wbed)

Axe G(¬(w1∧get-wood)∧¬(w1∧get-iron)∧¬(w1∧w0))∧(get-ironWiron)∧(get-woodWwood)∧
(F(wood) =⇒ (w1Wstick)) ∧ ((Fwood ∧ Fstick ∧ Firon) =⇒ F(w0Waxe)

Shears (get-ironWiron)∧ (get-woodWwood)∧ (F(wood) =⇒ (w1Wstick))∧ ((Fwood∧Fstick∧
Firon) =⇒ F(w1Wshears)

Gold specification ‘Bridge’ + ∧((Fwood ∧ Firon ∧ Fbridge) =⇒ F(get-goldWgold)
Gem specification ‘Axe’ + ∧((Fwood ∧ Fstick ∧ Faxe) =⇒ F(get-gemWgem)

Table 3: Curriculum of tasks and nondeterministic specifications in the ‘craft’ environment where AP I =
{axe, bed, bridge, cloth, door, gem, gold, grass, iron, plank, rope, shears, stick, wood} each referring to having an item in
the agent inventory and behaviors APO = {get-iron, get-wood, get-grass, get-gold, get-gem, w0, w1, w2} where the latter refer to
using three different workshops. These specifications were made deterministic by a total order over all available behaviors.

Maze Environment
The ‘maze’ environment, of which an example is depicted in Figure 5, is a grid environment of varying size. The environment
consists of various adjacent rooms. The agent is placed in one of these rooms and is tasked with reaching a particular other
room, possibly by traversing some intermediate rooms. Some rooms are connected by doors, which can be open or locked.
Locked doors can be opened by acquiring a key to that particular door and using it on the lock. These keys are placed in a
position that is reachable for the agent. The agent senses keys, locked doors and open doors in all cardinal directions and
cannot sense through walls. The state representation consists of a vector describing the distance to rooms and keys in all
cardinal directions, i.e. it is of dimensionality 12. The action space is defined as {up, down, left, right, key} where the first
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Figure 3: Visualization of craft world for the ‘Gold’ task. This task consists of executing (1) get-wood, (2) get-iron, (3) w0, (4)
get-gold. The labelling in this world consists of whether an item such as ‘wood’ is present in the agent inventory. This can be en-
coded into an LTL specification with vocabulary AP I : {wood, iron, bridge, gold} to describe the environment state and options
APO : {get-wood, get-iron, w0, get-gold}.

q0start

q1

q2 q3

input: plank
output: ϵ

input: ¬wood ∧ ¬plank
output: get-wood

input: wood ∧ ¬plank
output: w0

input: ¬wood ∧ ¬plank
output: get-wood

input: wood ∧ ¬plank
output: w0

input: plank
output: ϵ

input: ¬plank
output: w0

input:plank
output: ϵ input: ϵ

output: ϵ

Figure 4: FST for the ‘plank’ task generated with the ‘ltlsynt’ tool of the Spot package by Michaud et al.. This specification has input
alphabet AP I : {wood, plank} and output alphabet APO : {get-wood, w0}. Negative outputs such as ¬get-wood have been omitted in
this representation for legibility whereas negative inputs have been included only where necessary to differentiate between available edges.
For example, wood is not differentiating for any edges leaving q2. Edges incoming to the terminal node q3 produce no output: these are only
visited if a plank is present in the agent inventory, i.e. upon completion of the task.



four always move the agent in the particular direction in the grid. Options are terminated based on instructions or after fifteen
time steps and episodes are terminated after 100 time steps.

N

E

Figure 5: Visualization of a sample maze environment for the task ‘north-east’. Door states, i.e. states such that L(s) = 1door, are visualized
as a yellow cell . All other states are labelled as ‘not door’ states and visualized as a white cell . The agent (blue circle, ) senses its
environment in four cardinal directions with three sensors per direction: the first detects open doors, the second senses locked doors and the
last detects keys. The bottom left room contains two keys that look identical to the agent. One unlocks the door to the bottom right room,
which need not be visited. The other unlocks the door to the top left and needs to be picked up to reach the target. Arrows denote options
associated with ‘north’ and ‘east’ respectively for the specification (doorRnorth) ∧ (door =⇒ XGeast).

Task LTL specification
West, West Fdoor ∧Gwest
West, South (doorRwest) ∧ (door =⇒ XGsouth)
East, South (doorReast) ∧ (door =⇒ XGsouth)
North, West (doorRnorth) ∧ (door =⇒ XGwest)
North, East (doorRnorth) ∧ (door =⇒ XGeast)

North, East, North (doorR(north ∧ ¬east)) ∧ (F(door) =⇒ (F((doorReast) ∧ Fdoor =⇒ XGnorth)))
South, East, North (doorR(south ∧ ¬east)) ∧ (F(door) =⇒ (F((doorReast) ∧ Fdoor =⇒ XGnorth)))
West, North, East (doorR(west ∧ ¬north)) ∧ (F(door) =⇒ (F((doorRnorth) ∧ Fdoor =⇒ XGeast)))
West, West, South ((F(door ∧ X(Fdoor)))R(west ∧ Xwest)) ∧ ((F(door ∧ X(F(door)))) =⇒ FG(south)) ∧

G(¬(south ∧ west))
East, South, South (doorReast) ∧ F(Fdoor =⇒ XG(south ∧ ¬east))

Table 4: Curriculum of tasks and specifications in the ‘maze’ environment where AP I = {door} and APO = {west, east, north, south}
each referring to a room to move to and not (!) primitive actions.

Appendix B: Results per task
The results in the main document are aggregated across tasks of different complexity. To highlight where difference in per-
formance comes from, we split down the performance per task for both environments in Figures 6 and 7 and Tables 6 and 5.
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Figure 6: Total cumulative reward on craft world per task. The tasks ‘bed’, ‘axe’, ‘gold’ and ‘gem’ cannot be learned in the single-task setting
if reward shaping is not applied as evidenced by graphs in the first and third columns. Reward shaping with our framework allows the learner
to solve these hard problems. Additionally, the version of our framework with deterministic options and shaping (bottom right) is the only
solution that learns to solve the ‘gem’ task.

Training ρ Model WW WS ES NW NEN ESS SEN WWS WNE

holdout
0 Determ.

N/A

0.94 0.15
Sketch 0.85 0.14

0.1 Determ. 0.49 0.08
Sketch 0.87 0.17

isolation 0 Determ. 0.98 0.94 0.30 0.93 0.08 0.07 0.03 0.91 0.84
Sketch 0.83 0.00 0.01 0.02 0.00 0.00 0.03 0.00 0.00

Table 5: Maze environment zero-shot task completion rates for 1K evaluations, averaged over 5 random seeds. Each task consist of a sequence
of rooms to reach in the cardinal directions ‘North’, ‘South’, ‘West’, ‘East’. The task ‘WNE’, for example, consists of moving one room
‘West’, one room ‘North’ and one room ‘East’ in that order.
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Figure 7: Task completion on maze world per task. Each task consist of a sequence of rooms to reach in the cardinal directions ‘North’,
‘South’, ‘West’, ‘East’. The task ‘NEN’, for example, consists of moving one room ‘North’, one room ‘East’ and one room ‘North’ in that
order.

Training ρ Model Plank Stick Rope Cloth Bridge Shears Bed Axe

holdout
0

Determ.

N/A

0.94 0.83
Greedy 0.19 0.06
Stable 0.29 0.10
Sketch 0.09 0.00

0.1

Determ.

N/A

0.87 0.84
Greedy 0.2 0.06
Stable 0.3 0.14
Sketch 0.06 0.00

isolation 0

Determ. 0.96 0.80 0.97 0.97 0.94 0.91 0.91 0.76
Greedy 0.96 0.80 0.97 0.97 0.94 0.94 0.15 0.01
Stable 0.96 0.80 0.97 0.97 0.95 0.95 0.26 0.11
Sketch 0.00 0.00 0.17 0.00 0.03 0.02 0.00 0.00

Table 6: Craft environment zero-shot results per task for 1K evaluations, averaged over 5 random seeds.
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