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ABSTRACT
Language systems have been of great interest to the research com-
munity and have recently reached the mass market through various
assistant platforms on the web. Reinforcement Learning methods
that optimize dialogue policies have seen successes in past years
and have recently been extended into methods that personalize the
dialogue, e.g. take the personal context of users into account. These
works, however, are limited to personalization to a single user with
whom they require multiple interactions and do not generalize
the usage of context across users. This work introduces a problem
where a generalized usage of context is relevant and proposes two
Reinforcement Learning (RL)-based approaches to this problem.
The first approach uses a single learner and extends the traditional
POMDP formulation of dialogue state with features that describe
the user context. The second approach segments users by context
and then employs a learner per context. We compare these ap-
proaches in a benchmark of existing non-RL and RL-based methods
in three established and one novel application domain of financial
product recommendation. We compare the influence of context
and training experiences on performance and find that learning
approaches generally outperform a handcrafted gold standard.
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1 INTRODUCTION
The use of language by machines has been one of the central chal-
lenges in Artificial Intelligence since its initiation as a field of re-
search [30] [19]. Decades of research have advanced the state of
art to such an extent that major consumer-facing web platforms
currently offer text- and voice-based ‘assistant’ capabilities, such
as Tencent’s WeChat, Microsoft’s Cortana, Google’s Assistant etc.
These platforms have made access to the web through dialogue
ordinary. Although such platforms offer high-quality Automatic
Speech Recognition (ASR), Natural Language Understanding (NLU)
and audio synthesis modules, Dialogue Management (DM) modules
are typically handcrafted and require many non-trivial decisions in
design and implementation. Learned DM based on the formalism
of Partially Observable Markov Decision Processes (POMDPs) has
shown promising results in task-oriented dialogue systems, both
in simulation and real-life settings [25] [8] [35].

Personal context is understood to be fundamental to efficient
human-human communication [4]. As a consequence, recent works
have addressed the usage of personal context in DM. For example,
[29], [18] and [20] used previous interactions with a user to directly
estimate that users’ preferences and then used these estimates in
policy optimization. An alternative approach based on transfer
learning was presented in [6]. It requires a similarity metric and
weighting regime and performance degrades when these are not
available. None of these methods generalize the usage of context
across users and none of them leverages information available prior
to some users’ first interaction with the system.

We propose two approaches that optimize the DM policies us-
ing personal context. Both approaches are based on the POMDP
formalism of learned DM. The first approach consists of extending
the POMDP state space with features that describe the personal
context of the user. The DM module automatically learns how to
use this information for both groups, i.e. it learns the task at hand
and segmentation of users simultaneously. This approach allows
for personalization to emerge gracefully, e.g. only when enough
data is present and when the user model is sufficiently informative
for personalization. We compare this approach with a method that
explicitly segments users and then uses a learner per user segment.
The segmentation of interactions with different user groups mit-
igates the issue of a ‘mixed’ signal but leaves less experiences to
learn from per learner.

To test our approaches, we extend an existing benchmark for
POMDP-based statistical DM for recommendation in three ways
[5]. Firstly, we add a novel recommendation task in the financial
domain. Here, different user groups have different familiarity with
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products and specify their preferences at different levels of detail as
a result. Secondly, we change the user simulator in the benchmark
to reflect this scenario. Thirdly, we add three non-POMDP based
approaches to the benchmark: a randomized approach, an approach
with a task-specific heuristic and a state-of-art approach based
on entropy minimization [34]. To the best of our knowledge, this
comparison between POMDP and non-POMDP based approaches
on task-oriented dialog management is novel.

We use the extended benchmark to investigate when each ap-
proach is suitable for personalized DM and we investigate the
impact of available data to the achieved level of personalization.
We first introduce and formalize the recommendation task in Sec-
tion 2 and survey related work in Section 3. Next, we introduce the
generic approach to RL for DM and then introduce our extensions.
The experimental setup consists of recommendation in existing
and novel domains, a user simulator for personalized DM and a
benchmark of POMDP and non-POMDP algorithms, is introduced
in Section 5. After describing and analyzing the results in Section 6,
we conclude with a discussion in Section 7.

2 TASK DESCRIPTION
This work addresses DM in task-oriented dialogue systems. These
systems aim to solve a task by interacting with the user in a con-
versational style. A popular task for these systems is to recommend
a suitable item for a user. The system elicits user preferences or
constraints during a dialogue and recommends items from a given
item database. We introduce this task formally.

The task addressed in this paper can be formalized as a q-ary
two-player interactive search game [23]. In these game, the goal of
one player, dubbed Questioner, is to find a target subset Xtarget ⊆

X = {x1, . . . ,xn } out of a universe of items X of size n by asking
questions to the other player, the Responder. In this case, each
xi ∈ X consists of a vector of values ⟨xi1, . . . ,xim⟩ for features
{ f1, . . . , fm }. Xtarget is identified by a set of constraints C , in the
form of the desired value c j for some feature fj . We assume ∀c j ∈
C,∀xi ∈ Xtarget ,∀xi j ∈ xi : xi j = c j . Each c j eliminates a part of
the search space. We useCt to denote the set of constraints at game
turn t and XCt to denote the corresponding candidate item set.

Both the typical q-ary search game and our variation are gener-
alizations of the Rényi-Ulam game (RU game), also known as the
binary search game or the parlour game ‘20 questions’. In RU games,
Questions are limited to confirmation of a single constraint, i.e. they
are all of the form ‘c j ∈ C?’ In this format, the optimal question
halves the candidate item setXCt in the optimal case. In our setting,
however, the optimal decrease in candidate item set size depends
on the distribution of values for all fj ’s inXCt . The Questioner may
use knowledge about these distributions in selecting a fj to ask a
constraint for. We therefore include a policy that uses knowledge
about the distribution of values in all fj ’s as a search heuristic. More
so, the Responders’ tendency to provide constraints for a feature fj
may not be distributed uniformly in realistic settings. A Questioner
with access to past plays may use this experience to estimate the
likelihood of a constraint for a feature being present to find an item
more efficiently. We therefore include approaches that can leverage
experience into our benchmark, see Section 5.3 for details.

3 RELATEDWORK
Most approaches to personalizing dialogue systems can be catego-
rized as learning-based or rule-based. We provide a brief overview
of approaches in both categories. An example of a rule-based ap-
proach can be found in [10] and [29]. This system uses a model of
user preferences for constraints c j to weigh factors that determine
similarity of a user query to the items in X . The DM policy is hand-
crafted, which typically entails many nontrivial decisions that can
seriously impact system performance [16]. More recent examples,
such as [14], [3] and [27] collect user-related facts in a knowledge
graph. These facts are then used to personalize hand-crafted re-
sponse templates. These approaches focus on personalized natural
language generation and have handcrafted DM modules.

Learning-based approaches, on the other hand, optimize the DM
policy using experiences with real or simulated users. A conver-
sational shopping recommender is described in [18]. It requires
multiple interactions with a specific user and has a query-response
interaction style. An example with a natural language interaction
style based on transfer learning can be found in [6]. It initializes
a policy for the target user by training on data from interactions
with similar users. The authors find that it is beneficial to include
data from dissimilar users, albeit with lower weights, as this results
in better coverage of the state space during training. A drawback of
the approach is that it requires a suitable similarity metric. A trans-
fer learning-based approach that does not suffer from this drawback
is introduced in [20]. A policy is optimized using a global optimiza-
tion criterion and all available experiences. Next, the optimization
criterion is extended with user-specific slot-value preference esti-
mates which are updated in subsequent interactions. This approach
only adapts to individual users in terms of slot-value preferences
and requires multiple interactions with a single user. A third trans-
fer learning-based approach is presented in [9]. The selection of
experiences to train the model on for a specific user is cast as a
multi-armed bandit problem. Finding a source of experiences out
of all n users, however, requires at least n bandit trials. This limits
applicability to scenarios with a small number of users.

None of the approaches discussed so far leverage information
external to the conversation, e.g. context, to optimize the dialogue
policy. In non-conversational recommendation, however, numer-
ous works rely on the users’ personal contexts. As a full survey is
out of scope for this paper, so we focus on generic trends instead.
Recommender systems are typically classified as content-based,
collaborative filtering or a hybrid of these two. Content-based rec-
ommender systems ‘exploit the user profile to suggest relevant
items by matching the profile representation against that of items
to be recommended’ and thus rely on the users’ personal context
[22]. Collaborative filtering selects items for recommendation by
looking at past consumption patterns by similar users and personal
context can be used to determine similarity of users [13] [17] [1].
Out of these approaches, contextual bandit methods are specifically
related to this work. These methods aim to determine how elements
of personal context affect relevance of items through subsequent in-
teractions with users [15]. These methods, however, are not suitable
for conversational settings as they do not take sparsity of rewards
and the sequential nature of these settings into account.
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Figure 1: RL-based approaches to personalized DM.

4 APPROACH
This section describes two novel approaches to personalized DM for
the interactive recommendation task described in Section 2. First,
the formalism of Partially Observable Markov Decision Problems
is described and it is explained how it it can be applied to DM for
the interactive recommendation task.

4.1 RL for DM
State of the art statistical dialogue systems cast DM as a Partially Ob-
servable Markov Decision Problem (POMDP) [25] [33]. A POMDP
is a generalization of a Markov Decision Process where the true
state is not directly observable, but must be estimated through ob-
servations. In dialogue systems, the source of uncertainty about
the true state stems from errors in Automatic Speech Recognition
(ASR) and Natural Language Understanding (NLU) modules. The
POMDP is defined asM = ⟨S,A,T ,R,Ω,O⟩ where S ∈ {s1, . . . , sn }
denotes a finite set of partially observable states representing user
intentions and dialogue history, A ∈ {a1, . . . ,am } is a finite set of
actions representing system responses, T : S × A × S → [0, 1] is
a probabilistic transition function over states and R : S × A → R
denotes a reward function based on number of turns and accuracy
of recommendation, Ω ∈ {o1, . . . ,ol } is a finite set of observations
available to the system, and O : Ω ×A × S → [0, 1] denotes a prob-
abilistic function over observations, actions and states. The true
state s is unavailable to the agent, only observations Ω are.

The dependence ofO on Ω andAmakes the decision process non-
Markovian and thus unsuitable for standard RL algorithms. The
Markovian property can be regained, however, by maintaining a
Bayesian belief over S and substituting the original state space with
this belief space. This substitution leaves us with a continuous MDP
with an input space B ∈ {b1, . . . ,bo } with dimensionality |S | − 1,
which is too complex for most practical purposes. In practice, how-
ever, the belief space can be significantly reduced in size by splitting
it into factors and assuming mutual independence between factors.
In dialogue systems aimed at the interactive recommendation task

from Section 2, the belief space can be split into a factored belief
space B′ consisting of dialogue history beliefbd and a user intention
belief bi . The dialogue history bd describes, for example, whether
the system has already recommended an item xi or requested a
constraint for feature fj . The user intention belief describes prefer-
ences of the user w.r.t. the product database. Maintaining this state
is a challenge in itself, but outside of the scope of this work. See
[32] and [12] for overviews. As B is replaced by B′ and not used
anymore, we denote B′ as B from here on.

Constructing the POMDP involves some design decisions based
on the task at hand. Specifically, A should contain actions that are
useful or necessary for the agent to achieve its task. For the inter-
active recommendation task the agent plays the part of Questioner.
The available utterances should thus at least reflect requesting a
constraint for each feature fj and recommending an item. Addi-
tional actions can make the dialogue more natural and efficient,
such as confirmation questions of the form ‘c j ∈ C?’ and selection
questions of the form ‘c j ∈ C or c j′ ∈ C?’.

Besides a suitably defined A, the POMDP should be constructed
with anR that reflects the goal of the task at hand. This work is based
on a benchmark further described in Section 5. In the benchmark R
is defined as

20 ∗ acc(Xtarдet , ⟨a1, . . . ,al ⟩) − l (1)

for a given Xtarдet and trajectory of system actions ⟨a1, . . . ,al ⟩ of
length l . acc() returns 1 if the trajectory contains a recommendation
action for an item xi ∈ Xtarдet and 0 otherwise. The goal is to find
the optimal function π∗ : B → A that maximizes the expected sum
of discounted future rewards

π∗(b) = arg max
a

Qπ ∗

(b,a),∀b ∈ B,∀a ∈ A (2)

where

Qπ ∗

(b,a) = Eπ ∗

{ ∞∑
k=0

γkr t+k+1 |bt = b,at = a
}

(3)

and γ ∈ [0, 1] is a factor weighing future rewards and bt and at are
future beliefs and actions.

4.2 Personalized Dialogue Management
Wepresent two approaches to DMusing personal context of the user
based on the formalism described. Figure 1 provides an overview of
the two methods. Both use a vector describing the agents’ belief of
personal context bc of the user to optimize the dialogue for specific
users. This may include any available information about the user
that may aid in policy optimization. Examples of context include
demographics, purchase history and previous interactions. Note
that context need not be constant during or in between dialogues.
This section describes how context is used in both methods.

The method in Figure 1a is based on segmentation of the user
population by context. It assumes a functionM : Bc → G that maps
agent beliefs on user contexts Bc ∈ {bc1 ,bc2 , . . . ,bcn } to segments
д ∈ G (д for ‘group’). A separate policy πд(bd ,bi ) is maintained
that exclusively interacts with contexts bc for whichM(bc ) = д. As
the policy interacts with user contexts in a single segment, it learns
a policy optimal for that segment using only beliefs on dialogue
history bd and user intentions bi . The context bc is not available
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to the policy. A benefit of this approach is the absence of negative
transfer between segments: behaviors suitable to only a particular
segment of users are only learned by that segments’ policy and will
not be considered suitable by policies serving the other segments.
On the other hand, there cannot be any positive transfer either:
each policy is exposed to less interactions which may result in poor
belief state space coverage and degraded performance. Furthermore,
it may be nontrivial to find a suitable segmentation functionM as
this involves finding an unambiguous context representation and
determining the number of segments.

The method in Figure 1b does not suffer from these drawbacks.
It consists of concatenating beliefs on dialogue history bd , user
intentions bi and context bc . The resulting belief vector is then
used as input to a single policy πp (bd ,bi ,bc ) for the entire user
population. An algorithm that optimizes πp now jointly learns
DM and the usage of context therein. This allows for the learner
to only use context when it is beneficial and liberates us from
defining segmentation or similarity criteria. The composed learning
task, however, may be significantly more challenging as users from
different segments may have conflicting desires. This might lead to
a form of negative transfer that the algorithm optimizing πp has to
be robust to which may require more training data.

Domain # Items Group 1 & 2 Group 2 only
CR 110 price range area, food

SFR 271
price range, allowed
for kids, good for
meal

area, near, food

LAP 123

utility, price range,
weight range, war-
ranty, is for business
computing

family, processor
class, sys memory,
platform, drive
range, battery rating

FIN 14

minimum age, pur-
pose, account

name, insurance,
max. duration,
min. duration, max.
principal, min.
principal

Table 1: Usage of slots for constraints for the two user
groups. Group 1 denotes users unfamiliar with the domain
or ‘laypersons’ while Group 2 denotes users experienced
in the domain or ‘experts’. Expert users always use three
constraints, whereas layperson users have between one and
three constraints.

5 EXPERIMENTAL SETUP
The goal of this paper is to evaluate the proposed approaches for
personalized dialogue management. We split this goal into the
following research questions. In a personalized DM task,

Q1 when do learning-based algorithms outperform handcrafted
algorithms?

Q2 when do belief state-based approaches outperform segmentation-
based approaches?

Q3 how well do existing approaches generalize to the novel
domain of financial product recommendation?

Regarding these research questions, we hypothesize:

H1 learning-based approach only outperform handcrafted ap-
proaches in the presence of preprocessing errors.

H2 belief state-based approaches perform comparable to or bet-
ter than segmentation-based approaches.

H3a in the new domain, learning-based approaches perform com-
parable to existing domains.

H3b in the new domain, handcrafted approaches perform worse
than in existing domains.

The experimental setup is based on a benchmark suite for task-
oriented dialogmanagement [5]. The suite includes a user simulator,
a dialog management module and DM algorithms. The benchmark
further consists of recommendation tasks in three domains: rec-
ommendation of restaurants in Cambridge (CR), of restaurants in
San Francisco (SFR) and laptops (LAP), we refer to [5] for details.
We extend this benchmark in three ways. Firstly, we add a new
domain of recommending financial products. Secondly, we extend
the user simulator to include context. Finally, we add our proposed
algorithms and additional non-POMDP-based algorithms to the
benchmark.

5.1 Recommending Financial Products
The financial domain is an interesting addition as it is different from
domains currently in the benchmark: the number of interactions
with a single user is typically limited, there may be large gaps in
between interactions and user intentions are typically not constant
over interactions. It is, for example, unlikely that a single customer
needs multiple recommendations based on an intention to finance
a car purchase. This renders approaches that require multiple inter-
actions with a single user or that rely on direct estimation of user
preferences inapplicable.

A second particularity of this domain is that different users
have different familiarity with products. As a result, users in this
domain have differing preferences and ability to express them. For
example, customers that have a car loan will be more familiar
with technicalities of secured loans and therefore be more capable
of expressing their preferences for similar loans in detail. Such
differences are common in domains with complex products, such
as the financial, technology and automotive domains. Although the
exact formulation of context is not the focus of this work and may
vary per domain, we consulted with domain experts in the financial
domain on contextual factors currently used in determining how
to communicate with users across various channels. These domain
experts indicate that one of the major factors in communicating
about a product is whether the user consumes a product from the
same product category.

Differences with other domains are not limited to typical in-
teraction patterns, however: the item set X is distinctive in this
novel setting as well. This item set was developed using using well-
known ontology engineering practices and evaluated with domain
experts [21] [2]. The resulting item set consists of 14 products and
13 features. Nine out of these can be used as a constraint by the
user, see Table 1 for an overview. All other slots are only used to
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Entropy POMDP

RQ EM
D
B

EM
D
M

H
D
C

RL
v

RL
s

RL
bs

Task-specific v
NLU/DST-error aware v v v v
Adaptive v v v v
Uses context fixed adaptive

Table 2: Overview of qualities of approaches. RLv , RLs and
RLbs describe the vanilla, segmentation-based and belief-
state based versions of GP , A2C, DQN and eNAC.

inform the user about the product and not relevant to the recom-
mendation task. The number of values for all constraint features
is 64. When compared to the existing domains in literature, the
novel FIN domain has a relatively small item set and relatively large
number of constraint-slots. We add this item set as an ‘ontology’
to the Pydial benchmark for DM systems [5] which is described in
the next Sections in more detail.

5.2 User Simulator
We adapt the user simulator in the benchmark as described in [26]
to reflect the scenario from the previous section. A full descrip-
tion of this simulator is out of scope and we limit ourselves to the
main concepts before moving on to the extensions. In the simulator,
actions by the simulated user are conditioned on the dialogue so
far and on behavior parameters and includes an error model for
ASR and NLU modules. Parameters for all of these have been tuned
using data from experiments with real users, for details see [26].
Behavior parameters are sampled at the start of each dialogue and
according to distributions that have been set in user profiles so that
each dialogue is with a user with individual behavior characteris-
tics. Similarly, up to three constraints c j are sampled randomly for
each new simulated user. Additionally, heuristics to constrain the
action space can be enabled or disabled. These action masks make
part of the action space unavailable and ease the learning task. A
combination of user model, error model and availability of action
mask is denoted as an ‘environment’. In total, the benchmark we
use includes six different environments [5].

We extend the tuned simulator with user context to reflect the
scenario from the previous section. Two user groups are modelled.
The first group represents ‘laypersons’ that express constraints
for specific slots only; the second group represents knowledgeable
users that express constraints for all slots. All slots and their usage
per group are listed in Table 1. The usage of slots between groups
for the FIN domain has been set after consultation with domain
experts. For the CR, SFR and LAP domains, these are set to allow
for a comparison of approaches across settings.

We add a bc to describe the user context and add per-slot con-
straint usage parameters to the simulator. Specifically, bc is a vector
of two values, describing the belief on the user having experience
in the domain or not. Although our approach facilitates a wide
range of values, we here limit ourselves to the case of fully certain
upfront knowledge, i.e. bc ∈ {0, 1}2. We assume that interactions
with both types of users are equally likely.

5.3 Algorithms
We evaluate our approach using all algorithms in the benchmark
presented in [5] and measure per-dialogue rewards according to
equation 1 in Section 4.1 across 10 random seeds with 4000 training
and 500 test dialogues each. The benchmark contains one hand-
crafted policy, HDC , and four RL-based algorithms: GP for GP-
SARSA, A2C , eNAC and DQN . All of these algorithms are based
on the POMDP formalism introduced in Section 4.1.GP is a data-
efficient nonparametric value-based approach that uses Gaussian
Processes to estimate Qπ (b,a) from equation 3 [8]. DQN similarly
estimates theseQ values using a neural network, i.e. it is a paramet-
ric approach [28] [31]. A2C and eNAC are parametric algorithms
that estimate the policy π (b) as defined in equation 3 directly, where
A2C estimates Q(b,a) additionally [7]. We refer to [5] for more de-
tail on these algorithms. We include vanilla versions of the learning
algorithms, versions based on segmentation and versions based on
an altered belief-state and denote these by v , s and bs subscripts
respectively.

We further extend the benchmark with three non-RL-based algo-
rithms.1 The algorithms were selected based on the task formaliza-
tion of Section 2 and to enable a comparison of learning algorithms
versus handcrafted algorithms. Specifically, we add a randomized
baseline, an algorithm with a search heuristic and a state-of-art
learning method from [34]. This last method keeps a history of
successful dialogues as trajectories of user utterances u and system
actions ⟨u1,a1, ...,uℓ ,aℓ⟩ up to a successful recommendation aℓ .
During a dialogue ⟨u1,a1, . . . ,ut ⟩, the system selects the action at

that minimizes the entropy of all past successful recommendations
aℓ , breaking ties with a random selection. We denote this approach
with EMDM for ‘Entropy Minimization Dialog Management’.

The two remaining non-POMDP-based algorithms are a random-
ized baseline and a baseline that uses information about the product
database. The randomized baseline randomly asks for constraints
on feature fj until there are no differentiating features in XCt and
then recommends some item xi ∈ XCt randomly. We denote this
baseline with RQ for ‘Random Question‘. The second baseline has
the same strategy for recommending an item, but differs in selecting
fj . Given the current XCt , it selects the fj with the highest entropy
in the candidate item set XCt and requests the user preference for
it. This is a task-specific approach that uses a entropy as a heuristic
to search the item set XCt efficiently. We denote this benchmark
as EMDB for ‘Entropy Minimization DataBase‘. All non-POMDP-
based approaches, i.e. RQ , EMDM and EMDB, have no way of
dealing with errors from the ASR and NLU modules in Figure 1.
The output of these modules with the highest confidence score is
simply assumed as correct and used as input to these algorithms.

5.4 Environment and Hyperparameters
All experiments were run on Intel Xeon Silver 4110 Processors using
Python version 2.7.9, TensorFlow version 1.12.0, NumPy version
1.15.4 and SciPy version 1.2.0. Ten different random seeds ranging
from zero to ten were used. Hyperparameters were set as in [5], we
repeat them here. For the GP algorithm, a linear kernel was used
on the state space and a Kronecker delta kernel was used on the

1Code: https://bitbucket.org/florisdenhengst/pydial/commits/tag/web-intelligence-19

https://bitbucket.org/florisdenhengst/pydial/commits/tag/web-intelligence-19
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action space. The ‘scale’ variable of these determines the rate of
exploration and was set to 3.

DQN , A2C and eNAC use an ϵ-greedy exploration strategy dur-
ing training where ϵ is linearly scaled between ϵs and 0.05 in train-
ing, i.e. for the 4,000 dialogues. Exploration was turned off during
evaluation. See Table 3 for values of ϵs and network architecture for
the neural network based approaches. For these, the architecture
consisted of three layers of fully connected feedforward of varying
sizes. The Adam optimizer was used for training with an initial
learning rate of 0.001. We refer to the code repository for further
details on the hyperparameters.

# Nodes
Model Hidden Layer 1 Hidden layer 2 ϵs
DQN 300 100 .5
A2C 200 75 .5
eNAC 130 50 .3

Table 3: Hyperparameters for neural network based ap-
proaches.

6 RESULTS
In this section, we describe the results with respect to the research
questions from Section 5. Table 4 lists all results.

Q1 Figure 2a shows the performance of the best algorithms in
an environment where ASR/NLU errors are absent. According to
hypothesis H1, we expected the HDC and EMDB algorithms to
outperform learning algorithms. We analyse the performance of
these algorithms per domain. The CR domain contains relatively
little slots and groups are similar. The task-specific EMDB algo-
rithm moderately outperforms learning-based approaches GPs and
DQNs which in turn outperform the HDC algorithm. Moving to
the FIN domain, DQNs and GPs outperform HDC due to the large
difference between groups. We analyze the poor results of EMDB
in this novel domain below (Q3). In the LAP domain, the EMDB
algorithm performs the worst out of the selected algorithms. This
domain has a large number of slots hence there is likely to be a
differentiating feature fj that will be selected according to EMDB.
The EMDB algorithm thus keeps on asking for new fj , even when
the user has already listed all of their requirements. Comparing
HDC with learning-based approaches in this domain, it performs
comparable to DQNs andGPs . The reason for this may be that this
is a relatively challenging learning task which limits the benefits
of personalization. The SFR domain has a relatively large item set
X and a moderate number of slots. The search heuristic of EMDB
works as expected here andGPs and DQNs moderately outperform
handcrafted approaches. Overall, we find that –in contrast to H1–
learning-based approaches perform comparable or better than both
handcrafted approaches, even in the absence of ASR/NLU errors.

We now compare these families of approaches in an environment
with ASR/NLU errors in Figure 2b. In this setting, the gold standard
HDC algorithm degrades more than learning approaches, further
supporting the benefits of learning approaches in a scenario with
different user groups. The difference can be explained by HDC’s
response to an unclear answer for some slot: it requests the user to

confirm the most likely value as recorded by the ASR/NLU modules.
Such a request will not further the dialogue if that particular slot
does not contain a constraint for the user. TheHDC algorithm does
not take this into account, whereas learning approaches can adapt
to the laypersons’ inability to informatively respond after such a
confirmation request and ask for other constraints first. The EMDB
algorithm cannot handle uncertainty from ASR/NLU outputs. It
assumes the most likely preference as indicated by ASR/NLU mod-
ules. This assumption is occassionally incorrect and generally ruins
EMDB’s performance.

Q2 In contrast to hypothesis H2, performance of belief state-
and segmentation-based personalization approaches vary across
domains, environments and used learning algorithms. For the GP
algorithm, segmentation generally outperforms vanilla and belief-
state based approaches in both environments. This suggests that
GP suffers less from lack of training data as a result of segmenta-
tion, which is in line with earlier findings thatGP is a data efficient
algorithm [8]. The performance of this algorithm relies on the cho-
sen kernel. In the benchmark, a linear kernel is used. This kernel
assumes a linear relation between Qπ (b,a) and the belief state b.
We briefly analyze this linearity assumption by considering two
similar belief states b that only differ in the belief on user group
membership for the current user bc . The linearity assumption im-
plies that some favorable action for the first group is unfavorable
for the other group. This assumption clearly does not hold for some
actions, e.g. requesting some fj that is used by both groups.

For DQN , some negative effects of segmentation can be seen in
cases with a complex learning problem, i.e. in environments with
ASR/NLU errors and in domains with a large state space. These
negative effects can be mainly seen in domains with larger state
spaces LAP and SFR. Regarding the belief state-based approach, re-
sults indicate that it performs comparable or slightly better than the
vanilla approaches in most configurations. We hypothesized that
this approach would learn to exploit differences in user population
without suffering from the drawback of limited training data as in
the segmentation-based approach. Although our findings indicate
that the latter is generally the case, the benefits of personalization
diminish for more complex learning problems in environments 4-6.
A possible explanation for this is that the algorithms’ hyperparam-
eters, specifically the neural network architecture for DQN and
kernel for GP , were not optimized to the personalization setting.

Q3 Figure 3 shows how POMDP-based approaches hold over var-
ious domains in all included environments. We omit non-POMDP-
based approaches here due to their poor performance in environ-
ments 3-6. When comparing the novel FIN domain, the gold stan-
dard HDC is outperformed by all considered learning algorithms.
The learning algorithms generalize to the new domain. The HDC
policy was handcrafted for the other four domains and does not
transfer well to a novel domain with different characteristics. To
analyze the results of EMDB in the FIN domain, we consider again
Figure 2. In the FIN domain, the item setX is small which makes the
search heuristic on which EMDB relies inapplicable. These results
are in line with hypotheses H3a and H3b.
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Figure 2: Average reward per dialogue in test set for environments without (a) and with (b) ASR/NLU errors.
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1 0% on

no
rm

al

CR 12.2 11.6 10.6 8.5 9.0 12.0 1.4 6.5 10.6 9.4 8.9 11.7 10.5 12.7 12.7 -4.7
FIN 10.9 8.5 7.2 7.8 7.1 9.4 4.1 0.8 8.0 5.7 5.6 10.8 7.4 2.3 1.9 -12.3
LAP 5.9 4.1 0.6 7.2 7.0 8.4 7.5 7.9 5.9 7.0 3.8 8.2 8.5 4.2 3.4 -14.0
SFR 6.4 6.4 5.1 6.0 7.2 9.8 5.2 5.0 8.3 9.1 9.4 10.0 8.0 9.2 8.9 -8.8

2 0% off

no
rm

al

CR 2.8 2.3 2.2 11.8 11.2 11.3 -4.4 -3.8 3.2 11.7 11.6 11.7 11.9 12.7 12.7 -4.7
FIN 2.8 3.2 3.4 10.7 9.8 5.7 -3.2 -2.2 3.8 8.1 5.4 6.7 8.5 2.3 -10.0 -12.3
LAP -2.7 -2.4 -2.5 6.3 5.7 1.8 -3.3 -3.7 -0.1 -1.0 -0.9 -0.9 10.3 4.2 3.4 -14.0
SFR -0.8 0.1 -1.6 9.4 7.4 7.4 5.0 5.1 0.2 8.8 8.6 5.4 10.3 9.2 8.9 -8.8

3 15% on

no
rm

al

CR 8.2 8.1 7.8 10.3 9.8 11.0 7.0 8.0 10.0 8.5 9.1 9.6 6.6 -7.4 -7.0 -5.3
FIN 6.2 5.4 3.2 8.8 9.2 9.2 4.6 7.0 6.8 8.5 7.2 7.9 3.3 -7.8 -7.4 -12.5
LAP -1.3 -0.9 -2.2 7.6 7.2 5.2 5.7 5.5 4.6 2.3 3.3 4.9 5.3 -8.7 -8.5 -14.3
SFR 0.8 1.1 0.1 7.7 7.5 7.6 6.3 7.1 4.2 5.1 6.0 6.9 5.2 -8.4 -8.4 -9.7

4 15% off

no
rm

al

CR 2.4 2.6 1.4 10.2 9.5 7.1 0.9 1.7 2.9 9.6 9.7 8.9 6.6 -7.4 -7.0 -5.3
FIN 3.3 4.2 1.3 9.6 7.1 4.6 -1.0 -1.0 4.3 6.4 5.2 5.4 3.3 -7.8 -7.4 -12.5
LAP -3.0 -3.1 -2.7 4.6 3.4 -0.1 -3.8 -0.3 -2.5 -1.1 -1.0 -1.0 5.3 -8.7 -8.5 -14.3
SFR -1.0 0.2 -1.8 5.2 6.7 4.3 -1.1 2.0 0.9 4.6 4.7 2.5 5.2 -8.4 -8.4 -9.7

5 15% off

un
fr
ie
nd

ly CR 6.6 4.6 4.8 7.0 9.7 8.3 4.9 7.7 7.6 7.5 8.3 8.9 6.7 -7.5 -7.5 -5.5
FIN 2.2 2.1 1.6 6.2 7.2 4.1 4.4 5.5 5.1 5.3 4.6 5.6 2.5 -7.8 -7.5 -12.8
LAP -3.3 -2.0 -3.1 3.7 4.1 1.9 1.8 1.8 0.5 -0.0 -0.1 1.7 3.0 -8.6 -8.4 -14.6
SFR -2.1 -0.1 -1.1 5.3 4.6 4.6 2.3 3.3 4.1 3.8 3.6 3.5 3.7 -8.4 -8.4 -10.3

6 30% on

no
rm

al

CR 4.2 4.2 4.8 6.4 7.8 7.2 6.2 7.1 7.2 6.8 7.1 7.3 5.6 -4.7 -4.7 -5.8
FIN 0.6 0.2 0.5 3.7 3.8 3.8 3.8 4.8 5.6 5.2 3.5 4.9 2.5 -7.6 -7.0 -12.6
LAP -2.8 -2.6 -2.3 4.9 3.4 3.1 3.2 3.3 2.0 -2.0 -1.2 0.4 3.2 -9.3 -8.8 -14.5
SFR 1.6 -1.8 -0.5 5.7 4.6 4.6 4.2 4.7 4.9 3.6 2.4 3.5 3.5 -8.3 -8.0 -9.7

mean 2.51 2.34 1.54 7.28 7.09 6.35 2.57 3.49 4.52 5.54 5.38 6.03 6.12 -2.92 -3.37 -10.38
Table 4: Average reward per dialogue for test set across environments, domains and algorithms in the benchmark.
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Figure 3: Per-dialogue reward of selected algorithms in test
set, averaged over all environments.

7 DISCUSSION
In this work, we have proposed two approaches to DM using per-
sonal context and evaluated them on various environments, in
various domains and using various algorithms. The approaches
leverage existing contextual information about a particular user
and can offer personalized DM even in the absence of previous
interactions with a particular user.

In order to evaluate our approaches, we have extended an exist-
ing benchmark for conversational item recommendation with two
user contexts and associated behavior patterns. The behavior pat-
terns reflect those found in domains where ‘expert’ and ‘layperson’
users have differing knowledge about the available items. Results
indicate that learning a dialogue policy is beneficial in settings with
differing user behaviors. Notably, the addition of context boosts per-
formance of learned dialogue managers to comparable or higher lev-
els than a handcrafted gold standard and task-specific approaches,
even in an environment without noise from preprocessing modules.

We find that performance of learning approaches varies with
environment, domain, and algorithm. Specifically, data efficiency
could be investigated by increasing the number of training dia-
logues. Similarly, the applicability of the approaches could be inves-
tigated by varying the difference between user groups. Furthermore,
varying hyperparameter settings such as neural network architec-
ture and learning rate and more powerful and stable RL algorithms
may lead to more the complex behaviors in the new setting such as
those in [11]. More experiments are necessary to further investigate
performance characteristics for the proposed approaches.

With regards to methodology, we have introduced a case vali-
dated by domain experts in the financial domain and added it to an
existing benchmark of item recommendation. We have extended a
realistic user simulator with additional behavior parameters for all
domains in the benchmark to comprehensively test our approaches.
Although these additional parameters are suitable to test our ap-
proaches technically, they were not sampled from real-world data.
Comparing the approaches in real-world settings, such as an eval-
uation with real users or an evaluation in a configuration where

behavior parameters are based on real-world differences between
experts and laypersons would be interesting next steps.

Finally, we tested our approaches to the usage of context in a spe-
cific case with different user groups with static context information
and a constant action space. Our approaches, however, are general
and could be applied to various other usages of context to dialogue
policy optimization. Especially interesting would be the inclusion
of sentiment estimates as in [24]. Together with an extension of
the action space, these could aid in making the conversation more
natural by conditioning e.g. trust-building system responses on
conversation content and context at the same time.
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