
Vrije Universiteit Amsterdam

Focus Orange

Detecting Interesting Outliers

Active Learning for Anomaly
Detection

June 12, 2016

Author:
Floris den Hengst

Supervisors:
Mark Hoogendoorn

Dirk Jonker

Abstract

We propose an active learning framework for finding anomalies without a priori
knowledge. The framework consists of an unsupervised component for detection
of possible anomalies, a query selection mechanism to minimize the number of re-
quired labels and a supervised component for final classification. We argue that
LOF is the most suitable unsupervised method as it contains little assumptions
on the data. We find that an SVM-based classifier yields the best performance
for the supervised. Our approach enables the identification anomalies quickly
when all data is available for querying.

Preface

This thesis would not have been possible without excellent guidance, great in-
spiration and indefinite support from a number of people, of which I’m deeply
thankful.

The journey that culminated into this work was initiated by Dirk Jonker
with the open-ended question ‘How can we detect and errors in customer data?’
Although I’m paraphrasing, the lack of a strict definition and any predefined
goals in his original statement both posed a challenge and conveyed a clear mes-
sage of trust. This unusual combination of posing challenges without steering
towards paved roads I view as a clear example of ‘noise’...

For being an expert in scientific precision, I thank Mark Hoogendoorn and
all of his critical questions I can recall. Even though his throughput of papers
to review, courses to run and research to conduct kept growing throughout this
journey, the unfaded attention and continously insightful remarks proved a firm
basis for improvements to both the research and this piece of writing.

Finally, a note of thanks to friends, family and all others close to me: for
listening to ramblings and rants; for never-ending status update requests; for
providing ever-necessary distractions; for being motivational support machines;
for holding up a mirror and keeping my spirits up.

2

Contents

1 Introduction 5
1.1 Motivation . 6
1.2 Relation to other work . 7
1.3 Problem Statement . 8
1.4 Key Contributions . 8

2 Related Work 9
2.1 Unsupervised Scenario . 10

2.1.1 Probabilistic Model . 10
2.1.2 Extreme Value Model . 12
2.1.3 Subspace Model . 15
2.1.4 Proximity-based Model 16

2.2 Supervised Scenario . 22
2.2.1 Fully Supervised . 23
2.2.2 Semi Supervised . 26
2.2.3 Active Learning . 27

3 Active learning for anomaly detection 29
3.1 High-Level Overview . 30
3.2 Unsupervised Component . 32
3.3 Supervised Component . 32
3.4 Selection Mechanism . 33
3.5 Initial Round . 34

4 Experimental setup 36
4.1 Description of Data . 36
4.2 Establishing Ground Truth . 37
4.3 Quality of Classifier . 39
4.4 Combining Component Outputs 42
4.5 Hyperparameter Selection . 42

4.5.1 Unsupervised Component 42
4.5.2 Supervised Component 43
4.5.3 Parameter Settings . 44

4.6 Generalisability . 45

3

4.7 Learning Abilities . 45
4.8 Used Implementations . 46

5 Results 47
5.1 Unsupervised component . 47
5.2 Supervised component . 49
5.3 Learning Abilities . 50
5.4 Generalisability . 53

6 Discussion 56
6.1 Lacking a priori Knowledge . 56
6.2 Novelty of Proposed Method . 57
6.3 Limitations of Selection Mechanism 58
6.4 Generation of Labels . 58
6.5 A Note on Generalisability . 59

7 Conclusion 60

A Hyperparameter Selection Unsupervised Component 62

B Hyperparameter Selection Supervised Component 66

4

Chapter 1

Introduction

The analysis of outliers is an important step in any data-intensive task, as
deviations from normality can give easy insight into how the data was generated,
provide a sanity check and strengthens confidence in further analysis of the data.
Any introductory course on statistics or data mining contains a section devoted
to the assessment of data quality and strategies for finding and dealing with
possibly anomalous instances.

Advancements in technology and a continuously growing adoption of tech-
nology by the society at large has resulted in an increasingly growing amount
of data on a huge range of topics. This ‘new’ kind of data can contain highly
valuable information, however, it is often highly complex while messy at the
same time. In contrast with data being generated in carefully crafted experi-
ments in a way that matches data analysis goals as was the typical scientific
method for centuries, current data analysis challenges deal with situations in
which such analysis are not applicable – be it because of lack of control over the
data generating process, the large volume of data or the exploratory nature of
the analysis. Albeit these shifts in the approach to data generation and analysis,
anomalies have continued to arise and have continued to be of importance.

At the same time, data-driven decision making is becoming more and more
important to organisations. Business functions which have traditionally been
tackled from qualitative and ideology-based perspectives, such as customer care
and human resource management (HR), have recently started taking an interest
in data-driven approaches. These business functions typically deal with the
‘new’ kind of data that was described above.

Focus Orange is a company that provides data-driven analytics to HR de-
partments on topics such as succession planning, talent management and work-
ing conditions preferences. By combining domain knowledge with quantitative
methods and an automated approach, they gap the bridge between traditional
HR and upcoming technologies.

5

1.1 Motivation

Recently, Focus Orange has launched ‘Crunchr’: an online HR analytics plat-
form that brings self-service to the HR analytics domain. It has been observed
in practice that a key element in the successful adoption of this platform is the
quality of the data that it is based on. Faulty data can harm the analyses in
the platform and generally can make results unreliable. It is therefore desired
that data that enters the platform contains little errors. This requirement of
high quality data, however, is not easily met by most organisations for which
Crunchr might be of interest.

It is therefore vital that all data is validated before it enters Crunchr. This
is currently achieved by the combined effort of a domain expert and a data
scientist: the data scientist’s goal is to find possible errors and report these
to the domain expert, who then provides the correct values where appropriate.
Besides some intuition and rules-of-thumb, the data scientist’s main tool in
finding these values efficiently and quickly is outlier analysis (also known as
extreme value analysis).

This manual approach is time consuming, error prone and goes against the
self-service principle of the platform. It requires back-and-forth communication
between the domain expert and data scientist, both of whom might struggle with
understanding each others point of view and jargon. Furthermore, important
insights about a specific organisation might get lost over time: the continuation
of knowledge about which unlikely values are erroneous fully depends on the
data scientist.

Since organisations use different data management systems, there is no up-
front knowledge on which errors might be present. If such upfront knowledge
were easily available, the errors would not exist in the first place. Because we
cannot know up front which errors are present, each data set has to be audited
separately.

Furthermore, the definition of what should be viewed as a (possible) error
differs per organisation. For example: the degree of internationalization, or-
ganisation size and workforce composition could all contribute to what is seen
as an ‘abnormal’ salary for an organisation. An evidently erroneous situation
for the one organisation could be perfectly normal for another. This makes the
formulation of a single predefined method (e.g. a set of rules) for finding abnor-
malities for multiple data set sources infeasible. Another, more data-dependant
method is therefore desired.

Although various definitions of the concept ‘outlier’ exist, they all convey
a suspicion about an entry being unlikely when compared to the remainder of
the available entries – and thus possibly erroneous [29] [6] [34]. Not all unlikely
entries, however, are of special interest. The distinction between ‘interesting’
and ‘not interesting’ is by definition domain-specific: it depends on assumptions
about the way the data was created (the generating process of the data), which
features are more important than others and possibly even future usage of the
data.

We assume that these interesting and not interesting outliers can be sepa-

6

rated somehow: although domain-specific, this distinction cannot be completely
arbitrary. If this were the case, a human would not be able to make a proper
distinction either. We also assume the data should contain enough information
to make this distinction: a human would not require external sources.

Interesting outliers are known as anomalies or strong outliers, other outliers
are usually called noise or weak outliers [2]. Since this research is aimed at
finding errors for a data validation process, the terms anomaly for interesting
outliers and noise for all other outliers seems most appropriate and will be used
from here on out. Non-outliers are called normal entries.

1.2 Relation to other work

The various usages of outlier detection has lead to a wide variety of defini-
tions of the term ‘outlier’. Assumptions on knowledge of generating process,
dimensionality, shape and locality of patterns have lead to different models for
outlier detection: the probabilistic model are backed by statistical theory but
require knowledge on the generating processes of the data (underlying distribu-
tion, number of subpopulations, etc.), the extreme value is aimed at identifying
outliers in the outskirts of the data only, the subspace model requires global cor-
relations in the data, proximity based methods are suitable for clustered data.
Selecting the right model is key in the successful selection of an outlier detection
method.

From a Machine Learning perspective, methods can be categorized by the
availability of labels: Unsupervised outlier detection methods, such as those
described in [20], [61], [5] and [9] aid in finding outliers in a data set (discov-
ery of outliers) and are generally optimized for certain uses cases: (a lack of)
knowledge on the underlying distribution, a specific data set size or data dimen-
sionality and a focus on numerical or categorical data all play a role in selecting
an appropriate method for a use case. Unsupervised methods cannot make
a distinction between noise and anomalies, as this distinction is by definition
domain-specific.

Supervised methods can make this distinction between anomalies and noise.
These methods solve a specific variant of the binary classification problem, in
which a large imbalance between the available examples is present. Supervised
methods require examples from both classes in a part of the data (the training
set) from which the difference between anomalies and non-anomalies is learned.

Semi-supervised methods are rather rare in the anomaly detection domain.
Most of them are designed to work on a data set in which only examples from
one of both classes (anomaly, non-anomaly) are present, whereas in the current
setting examples from both classes are present. After a training phase, they are
able to detect points that are unlike the previously seen data, which is often
referred to as novelty detection [30]. Active learning approaches, in which points
are selected for labelling by a human, can be found in [70] [47]. The goal here is
to select as little points for labelling while still maintaining good performance.
These methods can be applied when unaided labelling of points is expensive,

7

however, their approach does not fit our use case.

1.3 Problem Statement

The goal of this research is to develop a method to efficiently separate anomalies
from noise and normal entries in a data set. This goal is split up into two sub
goals:

1. efficiently detect outliers without a priori knowledge

2. separating noise from anomalies among outliers

We aim for a method that can handle the absence of class labels initially,
operates on data sets where normal points and noise as well as anomalies may
be present and is robust to unknown underlying distributions.

In order to limit the scope of this research, we consider only numerical (con-
tinuous and interval) data. The rationale for this is threefold: most features in
our use case are numerical; categorical features can be converted into numerical
features relatively easy using ‘dummy variables’, and finally: errors in other
kinds of data can be detected relatively easy in other ways [66].

1.4 Key Contributions

This thesis starts out by exploring different definitions of what an outlier is
and describes related groups of outlier detection methods, which we call outlier
analysis models. Both unsupervised and supervised learning approaches are
treated, as both are present in the active learning framework we present in
Chapter 3. Besides an unsupervised and a supervised method, the proposed
framework consists of a selection mechanism which selects the next instance to
be labelled by an expert.

We argue that Precision and Recall are the most relevant performance met-
rics in our use case and we describe how we use them to measure performance
on training and test data. These are both relevant as they correspond to the
two sub goals presented in the previous section. We find that a combination of
Local Outlier Factor and C-SVC yields the best performance and that our query
selection mechanism improves random querying. Applying a trained model on
previously unseen data does not yield better results than a simple unsupervised
method. Investigating whether an ensemble of unsupervised models yields bet-
ter scores is left for future work.

8

Chapter 2

Related Work

Outliers can be analysed to remove erroneous points in a data set. As such,
outlier detection is a basic step in many data validation processes and a prereq-
uisite to doing statistical analysis on data of which the presence of outliers is
unknown. Outliers, ways to find outliers and methods to analyse outliers have
been studied extensively as a result.

Historically, this study was focused on estimating parameters of underlying
distributions of observations. With the rise of information technology, advances
in statistics and growth of both data and computational power a wide variety of
outlier analysis methodologies have been developed. Outlier detection is used
in various domains, ranging from finance and health care to astrophysics, and
has now surpassed its original use as a preparation step for further statistical
analysis. Applications in intrusion detection for web servers [50], finding brain
tumours from MRI scans [51] and fraud detection [48] exemplify this.

Alongside this growth in outlier detection applications, a multitude of differ-
ent definitions of the concept outlier has been developed. For example, in [27]
we find:

An outlying observation, or outlier, is one that appears to deviate
markedly from other members of the sample in which it occurs

Hawkins links outliers to the notion of a generating process [29]:

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a dif-
ferent mechanism.

With differing definitions of what an outlier is, naturally come fundamentally
different approaches to outlier detection. The terms outlier and outlier detection
should therefore be viewed as collective terms in which actually a multitude of
different concepts is contained.

In this chapter, we will give an overview of the available methods for outlier
analysis. In the first section we compare some outlier detection methods suit-
able which can be used for exploratory purposes: when no labelled instances are

9

present, an assumption on what constitutes an outlier should be made. This
leads to various different models of outlier analysis in the unsupervised sce-
nario: probabilistic, extreme value, subspace- and proximity-based models are
described with some exemplary methods.

When available, including information from known normal points and anoma-
lies into the method can be beneficial. We treat three possible variations in the
supervised scenario: fully supervised, semi-supervised and active learning and
show how they relate to our use case as described in Section 1.3.

Most techniques are presented separately for the sake of a comprehensible
overview. In reality, however, these techniques are combined and arranged in
multiple ways to improve performance and robustness. We will see some exam-
ples of this as well throughout the discussion of the methods in this chapter.

2.1 Unsupervised Scenario

When there are no labelled outliers available, the outlier detection task is of
an exploratory nature. This unsupervised scenario requires methods that can
find outliers without human supervision. Because of the absence of exemplary
outliers, an assumption has to be made on what separates outliers from normal
points. Depending on the data, an appropriate definition of the term ‘outlier’
should be used. These different definitions have resulted in a wide variety of
fundamentally different ways to find outliers: these can be regarded as different
models of outlier detection.

We will start by having a look at the probabilistic model, which is derived
from statistical theory and treats points that are unlikely given an underlying
distribution as outliers. A more basic model is treated next in which outliers
lie at the edge of the data: the extreme value model. The subspace model
is based on dependence between features and denotes points which cannot be
represented in a lower-dimension space properly as outliers. The last model in
this section is the proximity-based model. It treats points that are far away
from other points as outliers.

2.1.1 Probabilistic Model

The field of outlier detection originates in statistics: it was originally associ-
ated with identifying observations which are unlikely to stem from an assumed
underlying distribution. These deviations from the expected distribution may
be attributable to measurement error and it might therefore be wise to exclude
them from further analysis. These methods are also known as probabilistic,
statistical or distribution-based [2] [70].

One of the earliest known mentions of outlier detection, Chauvenets crite-
rion, can be applied to find outliers in a univariate set of observations drawn
from normally distributed populations [11], for instance, these 10 observations:
{−2, 6, 9, 9, 10, 11, 11, 13, 16, 18}. First, the observed mean µ and standard de-
viation σ are calculated. In our example, µ = 10.1 and σ ≈ 5.5. The value

10

−2 differs slightly more than 2σ from the observed µ. The probability of this
happening is roughly 0.03 given the theoretical normal distribution. The cri-
terion states that we should reject every data point for which the probability
of occurring given the observed mean and sigma is less than 1

2n , so we should
suspect all probabilities smaller than 0.05 in our example. This means we would
reject the suspected point according to this criterion. A general approach based
on QQ-plots that supports non-normal underlying distributions can be found
in [65]. First, the distribution of the data is approximated by regression of the
observed values on their estimated QQ-plot positions. Next, a lower and up-
per threshold are determined between which a certain percentage of all points
must lie (e.g. 5%). All points below and above the lower and upper threshold
respectively are reported as outliers.

With the use of mixture models this simple case can be extended to a more
advanced one in which a single feature is observed in instances from multiple
subpopulations. The subpopulations are assumed to stem from distributions
with differing parameters. When we know the number of subpopulations and
the underlying distribution of these subpopulations, we can estimate their pa-
rameters (e.g. µ, σ or other parameters) by using the Expectation Maximization
(EM) algorithm [43]. EM starts with randomly parameters for all subpopula-
tions and proceeds in two steps for various rounds: in the E-step each point is
assigned to the subpopulation it is expected to be part of based on member-
ship probability. In the M-step, the parameters of the formed subpopulations
are adjusted to describe their members best. The algorithm ends on conver-
gence. The different subpopulations are generally known as the components of
the mixture. Outliers are points that have low membership probabilities for the
component they are assigned to (low likelihood) or points for which it is hard
to decide to which component they belong (uncertainty) after convergence [57]
[41]. Alternating both criteria (interleave) yields the best results [47].

This mixture model approach using EM also works for multivariate nor-
mally distributed data. Alternatively, plotting the Mahalanobis distances for
each point to the mean in a χ2 QQ-plot visually indicates which points are
outliers [25]. We will not go into too much detail, but provide a brief descrip-
tion. The population mean can be estimated from the observed data, and is
composed of the mean for each variable, i.e. it is the centre of the data. The
Mahalanobis distances along each variable are calculated and summed. The
Mahalanobis distance corrects for covariance, so that extremity in two corre-
lated dimensions contributes only once. The distribution of the squares of these
summed Mahalanobis distances to the data centre is expected to follow the χ2

distribution when the data follows a multivariate normal distribution. When
plotting the resulting squared summed Mahalanobis distances against the theo-
retical χ2 distribution in a QQ-plot, outliers can be found by identifying points
that to disturb a straight line. A related, yet automated approach is described
in [22]. All of these methods require the underlying distribution to be known.

In conclusion: although they have a solid theoretical foundation, most of
the methods based on the probabilistic model require the underlying distribu-
tion to be known. Finding the distribution (including correct parameters) is

11

complex: efficient approaches exist [38], but bring their own complexity via the
introduction of new parameters. All of these do not apply to many real-life
scenarios. Because of these limitations, pure probabilistic-based methods are
not often used for outlier detection on high-dimensional data in an automated
setting.

2.1.2 Extreme Value Model

A theoretically more basic model for identifying outliers is by inspection of
values in the outer range of a set of data points, commonly known as extreme
value analysis [49]. Extreme value analysis in the univariate case simply returns
the top n points furthest from the centre of the data, i.e. the highest and lowest
values in the set. When all samples stem from the same population, this model
is very similar to the non-mixture probabilistic model in that the outliers always
lie in the outskirts of a data set. The difference between both models becomes
clear when considering a probabilistic mixture model. A distinguishing example
of can be found in [2]:

For example, in the data set {1, 2, 2, 50, 98, 98, 99} of 1-dimensional
values, the values 1 and 99, could very mildly, be considered extreme
values. [. . .] most probabilistic and density-based models would clas-
sify the value 50 as the strongest outlier in the data, on the basis of
Hawkins’ definition of generative probabilities.

A mixture model consisting of two components is expected to fit the three values
on the left and right respectively to finally find that value 50 is an outlier as
it does not fit either of the components very well. Extreme value methods
would not consider 50 to be an outlier, as it resides at the centre of the set.
Extreme value methods are expected to return values 1 and 99, as these are
most distant to the centre of the data. Extreme value analysis can be extended
to a multivariate setting in various ways. Depth-based methods try to fit multiple
convex hulls (or contours) to the data [55] [35]. Outliers can then be found by
‘peeling’ off the outer points until a pre-specified amount of data points at the
edge of the set has been found. When this pre-specified amount is not known,
all points can be ranked based on the depth (i.e. when the point was peeled
off). This requires the method to compute depth of all data points, which is
computationally expensive. These methods are therefore generally not used
for datasets with more than 4 features [2]. Although being amongst the first
in multidimensional extreme value analysis, there are very little applications
because of this restriction.

An extreme-value method that can also detect outliers in the centre of a
data set can be found in [13]. It does so by employing a mapping of the original
features in the so-called input space to a higher-dimensional feature space. The
mapping should be designed to scatter the data such that formerly central data
points move to the outskirts of the data. An example of such a mapping can
be found in Figure 2.1, where in the original data the suspected outliers lie
at the centre (making them impossible to detect using extreme value methods),

12

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Feature 1

F
ea

tu
re

 2

(a) Example dataset with a half-moon
shape. Suspected outliers lie in the
centre of the data set.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−0.2
 0.0

 0.2
 0.4

 0.6
 0.8

 1.0
 1.2

 1.4

Feature 1

F
ea

tu
re

 2

In
tr

od
uc

ed
 F

ea
tu

re

●

●●● ●

●
●

●● ●

●

●

●
●

●

● ●● ●● ●
●

●

●

●

●●
●

●●
●

●

●
●

●●
●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●●

●

●
●● ●

●

● ●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

(b) Mapping of Figure 2.1a to higher-
dimensional space using a Radial Basis
function. The suspected outliers now
lie in an outskirt of the dataset.

Figure 2.1: Applying a kernel can move outliers to outskirts of the dataset.

whereas they lie in the outskirts after the mapping has been applied. The group
of functions that can be used is generally known as kernel functions or simply
kernels. By looking for outliers in feature space rather than in input space, it
is possible to find otherwise hidden outliers. When an outlier detection method
can be expressed in terms of dot-products on vectors, the kernel does not have
to be applied explicitly as it can be included in all dot-product calculations
so that the mapping is performed implicitly. This generally does not add any
computational complexity [8].

A method suitable for extreme value analysis in high dimensional data can
be found in [37]. The idea is that when we draw arrows from a point to its
neighbouring points, the outgoing arrows for points with an extreme value are
expected to point at a more similar direction than points nearer to the centre
of the data set.

This is implemented by calculating the angle of pairs of difference vectors
from each data point to pairs of neighbouring points. When we consider every
point in the set as a vector, we can make a triple of vectors (~A, ~B, ~C) for all

combinations of points in the dataset (where ~A 6= ~B 6= ~C). The difference

vectors ~AB = ~B − ~A and ~AC = ~C − ~A now describe segments from ~A to
~B and from ~A to ~C respectively. See Figure 2.2 for a visual example, where
difference vectors are denoted as dotted arrows. Angles formed by pairs of
arrows originating from the leftmost point are all acute (note that reflex angles
are not taken into account – their acute counterpart is used instead), whereas
the angles formed by pairs of arrows originating from a central point are both
acute and obtuse. In order to let points close by be of more influence, the angle
between these difference vectors is weighted by their length (i.e. the distance

13

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

Feature 1

F
ea

tu
re

 2

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

Figure 2.2: Visualisation of the difference vectors used in Angle-Based Outlier
Detection. The variance of angles between pairs of difference vectors originating
for suspected outliers (e.g. the instance in the lower left corner denoted by the
red colour) is smaller than the variance of angles between pairs of difference
vectors originating from a point in the centre of the data (denoted in blue).

between the points). This weighted angle α is defined as:

α =
〈 ~AB, ~AC〉∥∥∥ ~AB∥∥∥2 ×∥∥∥ ~AC∥∥∥2 (2.1)

where 〈 ~AB, ~AC〉 denotes the dot product of ~AB and ~AC and
∥∥∥ ~X∥∥∥ the norm

(or length) of ~X. Note that the weighing is done by squaring the norm of the
difference vectors in the denominator. The variance in the weighted angles for
~A to all other points ~B and ~C in the set is expected to be lower for points that
lie at the boundaries of the data compared to points that lie closer to the centre.
As a performance optimization, only k nearest neighbours of ~A can be sampled
for ~B and ~C.

The basic extreme value model is somewhat simple in the sense that it only
identifies points at the boundary of the data as outlier. Kernels can be used to
adapt pure extreme value methods to also find outliers in the centre of a data
set. Extreme value methods can be computationally hard for high-dimensional
data, as they require computation of the ‘outermost’ points of the data. In some

14

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●
●●●●●●●●

●
●

●●●

●
●

●
●
●

●●
●

●●

●●

●

●

●

●

0 20 40 60 80 100

0
1

2
3

4

Feature 1

F
ea

tu
re

 2

possible outlier

Figure 2.3: A subspace method in
which a curve is fitted through a set of
data points. Applying extreme value
analysis to the residues (dashed lines)
of this fitted model can detect outliers
at a global scale.

−10 −5 0 5 10

−
10

−
5

0
5

10

Feature 1

F
ea

tu
re

 2

Figure 2.4: PCA on a multivariate nor-
mally distributed data set. The arrow
pointing to the upper right corner (red)
denotes the first principal component.
The other arrow (blue) denotes the sec-
ond principal component.

cases, sampling solves this issue at the cost of a loss of precision. Extreme value
analysis on high-dimensional data does not only suffer from performance issues,
however: when the amount of dimensions in a data set increases, the number
of points at the edge of the data is expected to grow as well. Extreme value
methods are therefore not often used on high-dimensional data. However, they
often form a crucial final step for methods from other outlier detection models.
Consider some method which assigns a score to each data point to express the
degree of ‘being an outlier’. Extreme value analysis on the righter tail of these
scores can aid in selecting data points which should be flagged as outlier.

2.1.3 Subspace Model

An intuitively appealing method to handle the curse of dimensionality from
which most probabilistic and extreme value approaches suffer is to reduce the
number of dimensions. An appropriate way to do this whilst removing as little
information from the data as possible, is by finding a way to express features in
terms of a subset of the original set of features.

Consider the two-dimensional dataset drawn from an exponential distribu-
tion presented in Figure 2.3. The fitted line can be found by using an appropriate
regression technique (e.g. Generalized Linear Model for arbitrarily distributed
response variables, logistic regression for categorical data, etc.) and produces a
per-point error known as the residue. It is visually clear that the point marked
as possible outlier has a relatively large residue. Applying an extreme value- or
probabilistic-based outlier detection method can identify outlying points. This

15

regression-based approach can be used to detect outliers in multivariate settings
as well, but it can find outliers in only one feature at a time, since regression
takes only one response variable.

The basic idea described above can be extended to a truly multivariate case
by using Principal Component Analysis (PCA). Whereas regression techniques
map the data from dimensionality d to dimensionality d − 1 (i.e. remove 1
feature), PCA can reduce the dimensionality to any d − k whilst accounting
for a large deal of variance in the data. Although a complete description is
outside of the scope of this research, we will give a short description of PCA
for outlier detection: in PCA, a covariance matrix

∑
describing the covariances

between all features is computed. This covariance matrix is symmetric by the
symmetry of covariance and positive semi-definite (i.e. non-negative). Because
of these properties, it is possible to decompose this covariance matrix into an
orthonormal matrix of eigenvectors P and a diagonal matrix of eigenvalues D:∑

= P ·D · PT (2.2)

As the eigenvectors are orthonormal (i.e. mutually orthogonal), the data set
can be rotated so that these eigenvectors form a new coordinate system. The
eigenvalues corresponding to the eigenvectors are related to the variance along
their eigenvector. By taking the k eigenvectors with the highest eigenvalues
and rotating the points so that they are aligned along these eigenvectors, the
dimensionality can be reduced by d−k whereby the eigenvectors are the axes of
the new coordinate system. For example, in Figure 2.4 most variance would be
captured along the red arrow (pointing to the top right). It would be possible
to rotate the entire dataset so that this red arrow forms the new x-axis and drop
the new y-axis (blue arrow) altogether. Extreme value- or probabilistic-based
methods can then be applied on the distances between the points in the reduced-
dimensional space and the input space to find points that do not follow global
patterns. This distance from projected space to input space can be regarded as
a measure of ‘error’ of the mapping for a specific point, which is comparable to
taking the residues in regression as described above.

Methods from the subspace model are only suitable when there are globally
consistent correlations in the data. When there are no correlations, the mapping
will have a large error for all points, making it impossible to detect outliers.
When correlations are present, but not globally consistent as in Figure 2.5, the
methods will (possibly falsely) report outliers in sections of the data that do
not follow globally dominant correlations. When the data contains non-linear
correlations, some preprocessing has to be applied or a more intricate model has
to be used (such as the GLM for regression).

2.1.4 Proximity-based Model

When the data contains patterns that are not globally consistent, the proximity
based model is more appropriate. This model relies on the notion of distance to
define outliers: if a point is located far away from other data points, it might

16

be an outlier. The intuition is that neighbouring points can be expected to be
alike and that it is unlikely that points behave differently from neighbouring
points. The proximity-based model is appropriate when points are clustered,
for example as in Figure 2.5.

Proximity-based methods were first proposed in [36], since which a wide
variety of variants has been proposed. Proximity-based methods are popular
because of high interpretability and ease of implementation [2]. There are dif-
ferent ways to define ‘proximity’ of points and multiple ways to flag points
based on proximity in comparison to other points. Some exemplary methods
are discussed next.

A first example of a proximity-based method is called Distance-based Outlier
and was proposed in [36]:

An object O in a dataset T is a DB(p,D)-outlier if at least fraction
p of the objects in T lies greater than distance D from O.

An easier, but similar formulation is often preferred over this original formu-
lation and is generally known as the k-nearest neighbour approach. In this
formulation, an outlier score is constructed based on the distance to the kth-
nearest neighbour. The distance can be used directly as an outlier score, or
some transformation (e.g. nonlinear scaling) can be applied. Alternatively, the
average distance to the k -nearest neighbours can be used. The distance D in
the original formulation can be seen as a threshold value which can also be
used in the new formulation, i.e. by discarding all points that have an outlier
score below this D. The new formulation ranks all points instead of providing
a binary label and thus also allows for reporting a fraction (i.e. top n%) of all
points.

K-nearest neighbour methods regard all outliers at a global scale, that is:
the outlier score of neighbouring points is not taken into account. This makes
them not robust to differences in local density : when the data is distributed
unevenly, the points in the sparse regions are reported more often than desirable.
Consider Figure 2.5: here we find three clusters and some suspected outliers in
the centre. The cluster in the bottom left, however, contains points that also
have few other points close-by, which makes them outliers when viewed at a
global scale. However, they will generally be viewed as non-outliers by humans
because of the general sparsity in this section of the data. Methods that take
local density into account will be discussed next.

Density-based methods share the notion of proximity with distance-based
methods, but include the ‘outlieriness’ of points in a region around the point
before assigning a final outlier score. The intuition is that when the outlieriness
of points in a region is equally low, this is probably just a sparse region – which
would indicate that these points do not behave unexpectedly and should not be
reported as outliers. Density-based methods thus partition the space, in contrast
to the distance-based methods that partition individual points. The main goals
are dealing with the differences in local density and lowering computational
complexity. The two most popular methods are discussed.

17

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=5

0

5

10

15

(a) k = 5: the points in the centre are
correctly detected, along with some er-
roneously reported points in the lower
left cluster.

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=10

0

5

10

15

(b) k = 10: the points in the centre
are correctly detected. The remainder
of detected outliers is primarily located
at the outskirts of the lower left cluster.

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=25

0

5

10

15

(c) k = 25: the points in the centre
are correctly detected, however they
do not have the highest outlier scores.
The remainder of detected outliers are
all located at the outskirts of the lower
left cluster.

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=70

0

10

20

30

40

(d) k = 70: the points in the centre
are no longer in the top 1% of outlier
scores. The detected points are all in
the lower left corner.

Figure 2.5: Results of the distance-based k-nearest neighbour method on a
clustered data set containing some outliers. The top 1% of outlier scores is
denoted by triangles. Outlier detection is performed at a global scale (compare:
Figure 2.6).

18

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2
k=10

1

2

3

4

5

6

7

8

(a) k = 10

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=15

2

4

6

8

(b) k = 15

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=20

2

4

6

8

(c) k = 20

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=50

1

2

3

4

5

6

7

(d) k = 50

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=90

1

2

3

4

5

6

7

(e) k = 100

−10 0 10 20 30 40 50

−
10

0
10

20
30

40

Feature 1

F
ea

tu
re

 2

k=120

1

2

3

4

5

6

7

(f) k = 120

Figure 2.6: Outlier scores for LOF for differing values of parameter k. The
top 1% of scores is denoted by a triangle. LOF proves robust against differ-
ences in local density. When k is bigger than the size of a non-outlier cluster,
performance degrades (subfigures e and f).

19

Local-Outlier Factor (LOF) was introduced as a first density-based method
in [9] and has met some popularity. It uses the notion of reachability distance of
a point i from another point j in order to define a per-point outlier score. The
reachability distance is defined as:

Rk(i, j) = max(dist(i, j), Dk
j) (2.3)

where Dk
j is the distance from point j to its kth nearest neighbour. This can

be interpreted as follows: the reachability distance of i from j is the distance
between these points unless i is closer to j than j’s k -nearest neighbour. All
points close to j thus get the same reachability distance. Note that by the above
definition, Rk(i, j) is not necessarily the same as Rk(j, i). The points close to j
(i.e. closer to j than its kth nearest neighbour) form the locality Lki of i. The
presence of j in i’s locality does not necessitate the presence of i in j’s locality.
The local reachability distance is defined as:

lrd(i) = 1/

(∑
`∈Lk

i
Rk(i, `)

|Lki |

)
(2.4)

so, as one divided by the average reachability distance of i from all ` within i’s
locality. This lrd is used to define the local outlier factor as follows:

LOFk(i) =

∑
`∈Lk

i

lrd(`)
lrd(i)

|Lki |
(2.5)

The reachability distances of points in i’s locality thus contribute to i’s out-
lier score: when i’s local reachability distance is low relative to the reachability
distance of points in its locality, then that i is relatively far away from a dense
cluster. This happens when the reachability distance of i from some `s is not
the same as the reachability distance of these `s from i and/or when some `s
are in i’s locality without i being in these `’s locality.

Rather than selecting a single value for the only parameter k, the authors
recommend to compute the LOF for a range of values for k. The final outlier
score can then be found by selecting the maximum LOF for the ks in this range.
The lower limit for the range can be regarded as the minimum amount of points
necessary to constitute a cluster. The upper limit for the range can be viewed
as the maximum number of points that may be in a cluster whilst still being
regarded as outliers. An example of the result for different values of k on the
same dataset can be found in Figure 2.6. Outlier scores are denoted by colour.
For lower values of k, the points in the centre are consistently reported as most
outlying, along with some points at the outskirts of the clusters. Performance
degrades as inappropriate values for k are used (k ≥ 100).

A similar method, called local correlation integral (LOCI) is presented in
[45]. The method is presented as superior to LOF due to the elimination of
choice for the range of parameter k, but its performance is not guaranteed to be
better [32]. LOCI does not require any selection of parameters and the notion
of neighbourhood is used more directly in LOCI when compared to LOF.

20

LOCI uses two notions of neighbourhood: the sampling neighbourhood
Nsampling(i, r) and the counting neighbourhood Ncounting(i, α, r). Nsampling(i, r)
contains all points within radius r around point i and Ncounting(i, α, r) con-
tains all points within radius αr around i. The authors advise to take 0 <
α < 1 so that the radius used for Nsampling is always larger than the ra-
dius used for Ncounting. Let ncounting(i, α, r) denote the number of points in
Ncounting(i, α, r) (including i itself) and nsampling(i, r) denote the number of
points in Nsampling(i, r) (again including i itself).

The average counting neighbourhood size for all points within Nsampling(i, r)
is then defined as:

n̂(i, α, r) =

∑
j∈Nsampling(i,r)

ncounting(i, α, r)

nsampling(i, r)
(2.6)

This average counting neighbourhood size is used to define the multi-granularity
deviation factor (MDEF):

MDEF(i, α, r) = 1− ncounting(i, α, r)

n̂(i, α, r)
(2.7)

The MDEF can be seen as a measure of local density compared to the local
densities of points in an extended neighbourhood. The normalized standard
deviation for this MDEF is defined as follows:

σMDEF(i,α,r) =
σn̂(i,α,r)

n̂(i, α, r)
(2.8)

where σn̂(i,α,r) denotes the standard deviation of ncounting(j, α, r) for all j ∈
Nsampling(i, r).

These MDEF and σMDEF are computed over a range of relevant radii r, so
that the outlier factor on multiple scales can be found. The suggested range of
relevant radii [rmin, rmax] is found by taking an rmin so that min(n̂(i, α, rmin)) ≈
20 and rmax corresponds to the maximum Ncounting possible in the data set, i.e.
by using the distance of the two points with the highest pairwise distance. The
rationale for rmin is that this number of observations is required to get a sta-
tistically large enough sample when comparing neighbourhood counts, whereas
the choice for rmax is dictated by the data: a larger rmax would not lead to new
MDEF values. For parameter α, the authors propose two values: α = 1/2 for
exact computations and α = 1/16 for approximations.

Outliers are defined as points for which MDEF(i, α, r) > kσMDEF(i,α,r) for
any r and with k = 3, so for all data points for which the MDEF is more than
three times the standard deviation within any r. As noted by the authors, the
choice of k = 3 theoretically bounds the number of reported points to 10% of
the data set, regardless of the distributions in the sampling neighbourhoods, by
Chebyshev’s inequality.

Proximity-based methods are suitable when applied to clustered data. Distance-
based methods have a high granularity, but come with a worst-case complexity
of O(n2) in a naive implementation. This can be improved in practice through

21

pruning (i.e. stop calculation of distances for points once they are known be
a normal point) and through the usage of spatial indexing [36]. Density-based
methods partition space rather than individual points: they have a more coarse
granularity and are more suitable for data with varying densities. Both types of
methods suffer from the curse of dimensionality in the quality of the reported
outliers: when the number of dimensions is large, points start to lie at a similar
distance making it hard to detect true outliers [3].

2.2 Supervised Scenario

In contrast to the scenario described in the previous section, labels are available
to some extent in a supervised scenario. The use of labelled instances can
improve performance drastically when employed correctly. In this section, we
will look at some methods that can be used when all instances are labelled
(fully supervised), when some of the instances are labelled (semi-supervised) or
can be obtained by interaction with an expert (active learning). Whereas the
goal in unsupervised outlier detection is to find outliers based on some implicit
definition (model) of the term ‘outlier’, the goal of its supervised counterpart
is to elicit a descriptive pattern that captures the difference between normal
points and anomalies – a ‘definition’ – from examples.

The field of Machine Learning (ML) is associated with finding patterns in
data [7]. Mitchell gives a formal definition in [42]:

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its perfor-
mance at tasks in T , as measured by P , improves with experience
E.

Supervised anomaly detection is a ‘class of tasks’. Some human input is required
to separate between noise and anomalies due to the domain-specific nature of
this separation (see Section 1.1). When combined with previous output, this
input can be seen as ‘experience’. Obviously, we aim for the performance of the
method to increase as the number of inputs (i.e. the experience) increases.

Out of the typical ML tasks, supervised anomaly detection resembles the
classification task most. A reduction from anomaly detection to classification
is provided in [1]. The main differences originate from the importance of class
imbalances. Whereas in anomaly detection the domination of normal points
over outliers is a central part of the problem definition, it is viewed as a pos-
sible complicating factor in general classification. Besides this, however, there
are no fundamental differences between classification and supervised anomaly
detection.

This section provides an overview of anomaly detection with supervision.
First we treat some methods that require class labels for all instances to be
present. These fully supervised methods often form the basis for other methods
which can handle label absences as well. The supervised scenario does not
fit our use case well, so the overview is not comprehensive. We will continue

22

with some exemplary methods that can handle the absence of labels. These
semi-supervised methods are closely related to methods that actively search for
instance of which the labels would improve performance most. These active
learning methods are suitable when an expert is available, as in our use case.

2.2.1 Fully Supervised

In the fully supervised scenario labels for all instances are available initially.
When employed correctly, available class labels can improve performance dras-
tically, because of the domain-specific definition of ‘anomaly’ [2]. Virtually all
supervised classification methods can be transformed into anomaly detection
methods via these adaptations:

Misclassification costs since most classifiers try to minimize some error func-
tion, class imbalance can lead to classifiers that label all points as the
majority class. A cost of misclassification can be introduced to this error
function [59] [62]. By penalizing misclassifications of the minority class
more than misclassifications of the majority class, a bias towards labelling
as the minority class can be introduced. The number of true positives
is expected to increase at the cost of a rise in number of false positives.
Some examples of including costs to move decision boundaries for specific
algorithm as well as a classifier-independent are discussed next.

Naive Bayes classifiers can provide class probabilities for all classes given
an instance. In the general case, the class with the highest probability for
this instance is selected. This decision rule can be altered to prefer one
class over the other by multiplying the probabilities by some factor c for
the anomaly class and some factor 1 − c for the normal class [40]. When
we prefer more true positives at the expense of some false positives, we
can choose c > 0.5.

Decision trees recursively split the data set in an ‘optimal’ way accord-
ing to some criterion by providing a series of attribute-value tests (e.g.
‘feature 1 > 2.0’). The attribute-value tests form the internal nodes of
the tree. When a stop condition is reached, a leaf node is created in which
class probabilities for all data points are determined by their presence in
this part of the split. An instance is classified in two steps: first, the tree
is traversed from the root to a leaf node by following the path denoted
by the splits in internal nodes. When a leaf node is reached, the class
with highest probability in this leaf node forms the prediction for the new
instance. The criterion (Gini impurity, information gain) used can often
be weighted to influence the ‘optimal’ split. For instance, in [12], the
Gini impurity is weighted to influence the final decision in leaf nodes (i.e.
shifting class probabilities as in Naive Bayes).

Support Vector Machines (SVMs) can find an optimal linear hyperplane
separating two classes (i.e. the decision boundary). They can be formu-
lated in terms of dot products and are therefore suitable for applying ker-
nels, to enable non-linear decision boundaries in input space (see above).

23

For additional details on kernels, see section 2.1.2. They have become
popular because of the uncommon ability to find an optimal result. A full
description is outside of the scope of this research, but a relatively large
description is required to outline the application of misclassification costs
in SVMs.

The original formulation of the SVM can be found in [14]. Consider a
training set of points x1, . . . , xi, . . . , xn, and their classes y1, . . . , yi, . . . , yn
where yi = −1 or yi = 1 for both classes. All separating hyperplanes
satisfy

〈w, x〉 − b = 0 (2.9)

where w denotes the normal vector to the hyperplane (i.e. a vector per-
pendicular to the hyperplane), b denotes a constant and 〈A,B〉 denotes
the dot product of A and B. Assuming linear separability, the distance
between two hyperplanes should be maximized to find the optimal sepa-
rating hyperplane:

〈w, x〉 − b = 1 (2.10)

〈w, x〉 − b = −1 (2.11)

The distance between these hyperplanes is 2
‖w‖ , so the goal becomes to

minimize‖w‖. Note that‖w‖ =
√
〈w,w〉 when w ∈ Rn, so that the object

of minimization can be simplified to 〈w,w〉. In order to prevent training
instances to fall into the margin, the following constraints are added:

〈w, xi〉 − b ≥ 1 for yi = 1

〈w, xi〉 − b ≤ −1 for yi = −1
(2.12)

which can be rewritten as

yi(〈w, xi〉 − b) ≥ 1 (2.13)

The optimization goal then becomes:

minimize 〈w,w〉
subject to yi

(
〈w, xi〉+ b

)
≥ 1

(2.14)

In order to allow for training instances to lie at the ‘wrong’ side of the deci-
sion boundary, per-point errors ξi known as slack variables are introduced
in [14] as well:

ξi > 1 misclassification of i

0 < ξi ≤ 1 margin violation of i
(2.15)

Including the slack variables results in the following optimization problem
[14]:

minimize C
∑

ξi + 〈w,w〉

subject to yi
(
〈w, xi〉+ b

)
≥ 1− ξi, with ξi ≥ 0

(2.16)

24

where C denotes how severely violations should be punished (e.g. C =
∞ turns definition 2.16 into 2.14). In [67] it is shown how the decision
boundary can be moved to favour one class over the other by using different
values of C for both classes, of which an application can be found in [4]
where it is combined with under-sampling the minority class.

MetaCost provides a framework for applying misclassification costs for
arbitrary classifiers based on a cost matrix consisting of misclassifications
costs for every combination of classes Cactual and Cpredicted [16]: first,
multiple copies of a classifiers are trained on different samples of the data.
Predictions of these classifiers for all instances are aggregated by voting.
Per-instance classification probabilities (i.e. the probability of an instance
to be classified as class C in the vote-based classification) are thus defined
as the fraction of votes for that class. Next, each instance is relabelled
to the class that minimizes the result of the multiplication of the class
probabilities with the misclassification cost for each class. Classes with a
low misclassification cost (e.g. anomalous classes) can be expected to have
more members when compared to original input. This can be thought of
as a bias towards these classes. Finally, the classifiers are retrained on the
relabelled set. Predictions for new instances are aggregated by voting as
well.

Resampling sampling the minority and majority classes differently, so that
the data on which the model is trained (the training sample) does not
reflect the class-distribution in the original sample. There are two basic
ways to achieve this [17]:

Oversampling minority instances of the minority class are duplicated
in the training sample to increase the number of available exam-
ples. This can be advantageous when there is little data available
and removing instances is undesirable. The duplication is sometimes
extended to generation of new examples by adding noise [1].

Under-sampling majority not all instances of the majority class are
included in training sample. This is preferred when enough data is
present so that (ideally) only duplicate information is removed and
the resulting training sample is smaller – resulting in faster training
times.

The sampling probabilities can be set to reflect the costs of misclassifica-
tion. Cost-based resampling is extremely similar to cost-sensitive classi-
fication. Under-sampling, however, may be beneficial to efficiency when
representative samples can be constructed (i.e. enough data is present). A
major advantage of resampling is that can be employed on top of any clas-
sifier. An extensive overview of resampling to correct for class imbalance
can be found in [21].

Boosting training multiple simple (or weak) classifiers and aggregating their
output to produce a final label can be beneficial when classes are imbal-

25

anced. Such a group of classifiers is generally known as an ensemble. Ad-
aBoost from [23] is a classic example. In each round, a classifier is trained
on a training set annotated with per-instance misclassification cost (the
weight). These are adjusted, so that misclassified items receive heavier
weights in the next round. The confidence or strength of the weak clas-
sifiers is decreased as a function of the number of previously misclassified
items in a per-round fashion. The final label is determined by summing
the strength-weighted outputs of all classifiers.

The above techniques can be applied both in ‘generic’ classification and
anomaly detection. An important –often implicit– assumption they rely on,
however, is that the original dataset contains a sufficiently representative set
of outliers. This might pose a problem due to the limited availability of a
representative set of anomalies. When data changes over time, new kinds of
anomalies may enter the data set [26]. A convincing example of this can be
found in anomaly detection for intrusion detection, where a model should be
able to detect attacks of an entirely new kind as well as known attacks. A
method that takes detecting unknown anomalies into account can be found in
the next section.

2.2.2 Semi Supervised

Semi-supervised methods can be applied when some class labels are present and
some are missing. Every supervised method can be ‘transformed’ into a semi-
supervised method by completely ignoring the unlabelled instances. Although
such an approach would lead to a method that adheres to the strict definition,
only methods that actually take the unlabelled instances into account during
training and classification are meant in most literature. In this section, some
examples of semi-supervised anomaly detection methods are treated.

Similarly to the fully-supervised scenario, classification methods for the semi-
supervised scenario can be adapted for the anomaly detection domain by weight-
ing, resampling and boosting. A large variety of semi-supervised classifica-
tion methods can be found in [71]. The two methods specifically designed for
anomaly detection in [24] and [68] follow a different scheme: both rely on exist-
ing semi-supervised clustering techniques with an adapted objective function.
The semi-supervised clustering methods they rely on are K-means clustering
from [39] and fuzzy rough C-Means clustering from [31]. The objective function
to minimize contains an overall clustering score, deviation from known instances
and number of outliers. There are no test results of the algorithm proposed in
[24]. The tests results in [68] indicate that results vary strongly on the chosen
number of clusters, their precalculated centres and various other parameters. A
method for obtaining these is part of future work. All of these semi-supervised
methods originate from a supervised method and also require a representative
sample of all anomalies in the training sample, which might be hard in some
situations.

Another approach is taken in [26]. The authors argue that because of lacking

26

information on possible (future) anomalies, it might be better to adapt unsu-
pervised methods for semi-supervised learning instead of using generic semi-
supervised classification methods as a basis. An SVM-inspired unsupervised
technique from [60] by the name of Support Vector Data Description (SVDD) is
used as a basis. This SVDD can be seen as an unsupervised one-class classifier:
it forms a sphere around the data with radius R. The objective is to minimize
the sphere, i.e. to minimize volume R2 while still containing most of training
examples. To enable non-spherical shapes, the problem can be solved in feature
space by applying a kernel (see Section 2.1.2). Slack variables are used to al-
low for points to lie outside of the ‘ball’. In the original paper, an adaptation
that includes negative examples (i.e. labelled anomalies) in the optimization
goal is described. It uses a similar approach as the weighted two-class SVM
described in Section 2.2.1: all unlabelled points are assumed to be normal and
the slack variables are weighted differently for wrongly classified anomalous and
(assumed) normal points. However, in [26], it is shown that this problem is
not guaranteed to be convex. This makes it possible for the solving algorithm
to get stuck in local optima. Therefore, its authors propose an alternative for-
mulation which is convex when combined with some types of kernel functions
(most notably the popular Radial Basis Function (RBF) kernels), which they
call Semi-Supervised Anomaly Detection (SSAD). This method outperforms ex-
isting methods on data sets in which new types of anomalies are introduced after
training the model.

2.2.3 Active Learning

In this section we will treat some methods that can actively request labels
for instances. Initially, all points are unlabelled. For a number of iterations,
instances to be labelled are selected. Different criteria can be used for selecting
these instances. The working model should be updated to reflect the feedback
by the expert correctly. This setting is known as Active Learning. In active
learning, the aim is to build some model while requesting as little labels as
possible, i.e. to iteratively select unlabelled instances that would lead to the
largest improvement of model performance. Generally, the expert is assumed
to provide correct class labels all of the time.

The method in [47] assumes a mixture model fit to the data and its design is
specific to be effective on large data sets with extremely few anomalies (0.001%
outliers in a set of 10,000 instances). The method starts by clustering using the
EM algorithm (see Section 2.1.1). Next, the following steps are performed in an
iterative fashion: selecting the top-35 instances for labelling (1) and perform-
ing a semi-supervised alternative to EM (2). The following criteria are used
alternately for selecting instances in step 1: instances which are far away from
the clusters they have been assigned to by the EM algorithm and instances for
which the likelihoods are similar for all components in the mixture according
to the EM algorithm. These criteria are named low likelihood and ambiguity
respectively the authors. Using these criteria in an alternating fashion yields
the best results. The alternating of the low likelihood and ambiguity criteria

27

is dubbed interleave and has proved successful in other settings as well [58].
The adaptation of the EM algorithm to include class labels for step 2 consists
of overriding the class-probabilities to 1 for the actual class and 0 for all other
classes after the E-step. This method will be referred to as ‘Active Learning
EM’ in the remainder of this work.

Another active learning approach is presented in [69], where the unsupervised
method LOCI (see Section 2.1.4) is combined with a two-class SVM. First, the
MDEF values for all points for multiple radii r are computed. Next, all instances
are sorted descending based on the maximum MDEF across all r. A number of
suspected anomalies and normal points are selected from the top and bottom
of this sorted list. Let POS and NEG denote the top and bottom of the list
respectively. A two-class SVM is trained on the set, where POS and NEG form
the training data. Next, the element closest to the margin on the negative (e.g.
non-anomaly) side is selected. If the selected instance is an anomaly according
to the expert, the subsequent next instance on the negative side of the decision
boundary is selected. If the selected instance is not anomalous according to
the expert, an instance is selected in between the last reported anomaly and
the last reported normal instance. When no instances have been reported to
be anomalous by the expert, an artificial instance on the decision boundary
or the closest instance to the positive (i.e. anomalous) side can be used. The
selection mechanism used here is generally known as the margin strategy for
SVMs. It was originally presented in [63], where it was shown why it can be
expected to lead to maximal classifier improvement in the general case. The
feedback from the expert adds instances to POS and NEG, after which a new
model is trained in the next iteration. Convergence is defined as receiving a
negative answer on both type of queries to the expert. The robustness against
the multi-granularity problem and against differences in local density and the
SVMs guaranteed optimal separating hyperplane are presented as the methods
main strengths.

The semi-supervised SSAD method presented in the previous section has
been extended with a selection mechanism as well. As it is based on the unsu-
pervised method SVDD, the first round does not have to be treated as a special
case: the method bootstraps using vanilla SVDD. In subsequent rounds, points
are queried by a combination of the margin strategy and a term that selects
points that have little labelled neighbours. This latter term is used to maintain
performance when new types of outliers are introduced. It consists of an adja-
cency matrix of training instances where all verified labels for each instance’s k
nearest neighbours are stored. By calculating the sum over all k nearest neigh-
bours, clusters of previously unknown data points can be found. Points in these
clusters will have a low value for this sum. Class labels for positive (normal)
and negative (anomaly) classes are encoded as 1 and −1 respectively in SSAD,
so that points which neighbour to both classes are also preferred in the next
labelling round.

28

Chapter 3

Active learning for anomaly
detection

This chapter contains a detailed description of the proposed method. The aim is
for a method that satisfies the requirements described in Section 1.3, from which
the following list of requirements was compiled . It is included for convenience
and further reference:

1. Presence of noise and anomalies
The method should be able to handle data sets in which both noise and
anomalies are present besides normal entries. This is implied by sub goal
1 from Section 1.3.

2. No class labels present initially
From sub goal 1 from Section 1.3, no class labels are present initially.

3. Limited availability of domain expert
We assume a domain expert to have limited availability: this means that
a domain expert is willing to label some entries, but would want to avoid
having to label an entire data set. We are therefore interested in the
trade-off between performance and the number of labelled instances.

4. Reusability of result
An organisation can upload multiple data sets over time and will typically
do so every month. Since we are dealing with HR data, we expect both the
data and the definition of ‘anomaly’ to change only slightly within the time
frame of a month. We aim to take advantage of this situation by using the
outcome of a previous result for a next data upload. A model trained on
a specific data set should be reusable on subsequent data uploads without
losing adaptivity.

The first section of this chapter provides a high-level overview of the pro-
posed framework: an unsupervised and a supervised component are combined

29

with a selection mechanism to form an active learning method which outputs a
classification to {anomaly, non-anomaly}. In subsequent sections we motivate
the design decisions for the unsupervised and supervised components and the
selection mechanism. We conclude this chapter with a description of the initial
round, as it forms a special case.

3.1 High-Level Overview

The proposed framework consists of the following parts: an unsupervised com-
ponent, a supervised component and a selection mechanism. For a graphical
depiction, see Figure 3.1. Any unsupervised outlier detection that can generate
an anomaly rank or score can be used for the unsupervised component. For a
motivation of the anomaly rank or score requirement, see Section 3.4. The un-
supervised method is necessitated by requirements one and two from the start
of this chapter. The supervised component is necessary by the domain-specific
nature of the separation between ‘anomaly’ and ‘noise’. It can be any supervised
method that produces an anomaly rank or score due to similar considerations as
for the unsupervised method. Strictly speaking, any supervised method could
be used, but in practice, methods that can handle class imbalance well are to be
preferred. The selection mechanism is used to determine which points should
be labelled next by the expert. These components are described in more detail
below. For an overview of requirements and chosen methods, see Table 3.1.

From these separate component outputs however, a final anomaly score is
still to be constructed. This is represented as a separate component in our
framework, as multiple strategies can be considered. For example, a weighted
average of the scores produced by both components could be used. The weight
could be set once, determined as a function of the number of labelled exampled,
etc. Since the only requirement for this component is that it can turn the outputs
of the other components into a binary {anomaly, non-anomaly} classification,
we refrain from describing it further in this chapter.

30

unsupervised component supervised component

classification

selection
mechanism

unlabelled
data

labelled data

expert input

combine outputs

Figure 3.1: High-level overview of proposed framework. Unlabelled data forms
input for a fully unsupervised component and a component with supervision.
Any available labelled data forms additional input to the component with su-
pervision. Together with a selection mechanism, the anomaly scores of these
components lead to an instance to be labelled by the expert. Dotted lines indi-
cate how the final binary classification is constructed after training.

Fully Unsupervised methods
Fully Supervised methods (including C-SVC)

K-means clustering
Fuzzy Rough C-means clustering

SSAD
SVDD

Active Learning EM
LOCI and SVM

Presence of noise and
anomalies (req. 1)

√ √ √ √ √ √ √

No class labels initially
(req. 2)

√ √ √ √ √ √ √

Efficiently query labels
(req. 3)

√ √ √ √

Robust against new
classes of anomalies (req.
4)

√

Anomaly score as output
possible

√ √ √ √ √ √ √ √

Convex formulation to
prevent convergence to
local optima

N/A N/A N/A N/A
√

N/A
√

Table 3.1: Comparison of methods from Chapter 2 based on requirements from
the start of this chapter.

31

3.2 Unsupervised Component

As argued in Section 2.1, all unsupervised methods are based on implicit as-
sumptions on characteristics of the data. The proximity methods from Sec-
tion 2.1.4 are robust to differences in local density and make very little assump-
tions on data characteristics: they only assume a clustered shape and perform
well on data with a lack of global correlations.

Because of above considerations, the LOF and LOCI methods seem most
appropriate for the unsupervised component. Both are capable of returning
per-point anomaly scores. For LOF, the original authors suggest to use a range
for parameter k and select the maximum LOFk(i) of Equation 2.5 over all ks
in the range for determining a final outlier score. LOCI defines outlier scores
using an MDEF score over a range of radii r (see Equation 2.7) and provides
a normalized standard deviation (see Equation 2.8) of these scores. We can
convert these into an outlier score SLOCI for each instance i in the following
way [33]:

SLOCI(i) = max
r∈R

{MDEF(i, α, r)

σMDEF(i,α,r)

}
(3.1)

We will compare these methods and select the method that gives most promising
results.

3.3 Supervised Component

A supervised component is required to separate anomalies from non-anomalies
(i.e. noise and normal points). This supervised component cannot consist of a
fully-supervised method, as those methods require all instances to be labelled.
From requirements two and three, we can deem this impossible: labelling an
entire data set would be too costly and would not be an improvement over
the current situation. The semi-supervised and active learning methods from
Sections 2.2.2 and 2.2.3 do meet these requirements. From the remainder of
this chapter, a supervised method that can handle missing labels (i.e. a semi-
supervised or active learning method) is meant when describing the supervised
component.

Requirement five from the start of this chapter implies that it is possible for
new ‘classes’ of anomalous and normal points to be introduced after training
via subsequent data uploads. This means that the supervised component should
be robust to the introduction of new data points as well. The SSAD method
uniquely combines robustness to introduction of previously unknown data with
a semi-supervised approach and is therefore selected as a supervised component.

SSAD is rather novel and its performance characteristics have not been stud-
ied thoroughly. We therefore include a well-known state-of-the-art classifier that
functions as a baseline for comparing performance. Since SSAD is a special kind
of an SVM-based classifier, we select a more general SVM classifier (C-SVC) as
a baseline for the supervised component.

32

Figure 3.2: Active Learning with SVM in a linearly separable example. The
version space lies between the dashed lines marked by H1 and H2. The label
for the unlabelled point closest to the margin (marked by red circle) is the most
informative, as it is expected to halve the version space, irregardless of the
actual label being positive or negative. Image taken from [19].

3.4 Selection Mechanism

The selection mechanism should enable the method to reach a good performance
whilst requiring only little queries to the domain expert. It is the main driver
for performance with respect to requirement three from the start of this chap-
ter. In this section we propose a selection mechanism that combines rank-based
disagreement with the margin strategy.

The margin strategy is an active-learning approach for SVMs. It was first
presented in [63]. See Figure 3.2 for a graphical depiction. SVMs are binary
classifiers that can find the optimal decision boundary between two classes.
The solid line marked ‘margin’ forms the optimal decision boundary for the
purple squares and the yellow dots in Figure 3.2. They do so by maximizing the
distance from the decision boundary to labelled instances. The optimal decision
boundary is one out of many separations that are consistent with the data. All
consistent decision boundaries place all labelled instances at the correct side
of the decision boundary, but the distance between the decision boundary and
these points is not necessarily maximized. These possible separations lie in an

33

area of feature space known as the version space. In Figure 3.2, the version space
lies between the dashed lines marked with H1 and H2. In the semi-supervised
scenario, unlabelled points about which the classifier is uncertain lie closer to
the decision boundary than the labelled instances that helped calculating the
optimal one. In [63] it is shown that the maximal classifier improvement can be
achieved by dividing the version space into two equal parts in the uninformed
scenario. This can be understood intuitively by considering that a query to the
expert for the triangle encircled in Figure 3.2 can lead to a positive and negative
label: a negative label will move the decision boundary roughly halfway towards
the positive side whereas a positive label will move it roughly halfway away from
the positive side. This strategy thus leads to the highest expected improvement
to performance, given the current model and assuming no additional knowledge
on the unclassified instances. Because of this it is often described as a ‘greedy
optimal’ strategy.

The active learning extension to the proposed supervised component SSAD
from [26] (see Section 2.2.3) therefore combines the margin strategy with a kNN-
based heuristic in order to both investigate instances the classifier is uncertain
about and focus on previously unseen parts of the data set respectively. This
kNN-based strategy, however, implicitly assumes that all instances reside in
equally dense parts of the data set – similarly to the kNN methods described in
Section 2.1.4. We propose a method that is more robust to differences in local
density by using using rank-based disagreement as a heuristic.

We assume both the supervised and unsupervised components can provide
a per-instance anomaly rank and that the unsupervised component is robust
to differences in local density. By comparing each instance’s anomaly ranks
from the supervised and unsupervised components, we calculate a metric of
disagreement of both methods. By alternating queries for new labels using
this rank-based disagreement and the margin strategy a similar scheme as the
interleave method from [47] is achieved: instances about which the supervised
method is uncertain and regions which appear to have not yet been properly
included in training the supervised method will be selected in an alternating
fashion. If methods A and B produce ranks RA(i) and RB(i), their rank-based
disagreement D(i) is denoted as:

D(i) = |RA(i)−RB(i)| (3.2)

Note that both LOF and LOCI are robust to differences in local density and
can generate anomaly ranks by ordering the instances based on outlier scores.
The SSAD method can generate anomaly scores by using the distance to the
decision boundary.

3.5 Initial Round

Because the supervised component needs some class labels, the very first round
of learning forms a special case. The selection mechanism used in the initial

34

round cannot be neither disagreement nor the margin strategy as both are based
on a trained supervised model.

The solution is to fall back to a second unsupervised method in the initial
round and start with the disagreement mechanism. Since the SSAD method is
based on the unsupervised SVDD method, it is a natural fit to use this as the
secondary unsupervised method in the initial round. For the baseline C-SVC
method, there is no such fallback: we therefore set its performance to 0 until
examples from both classes are available.

35

Chapter 4

Experimental setup

This chapter contains a description of the data sets and evaluation metrics
used. The latter are derived from the problem statement in Section 1.3 and the
requirements in Chapter 3.

We want to validate our method for the HR data use case, but still want to
be able to compare it with other methods. We therefore include results on data
sets that are well known in the anomaly detection literature. We first describe
the data sets and how a ground truth has been established. We proceed with an
extensive comparison on suitable metrics for determining the quality of anomaly
detection methods. Next, we list the hyperparameters used and describe how
their values were chosen. The chapter is closed by detailed descriptions of the
experiments: the way generalisation was measured, how learning abilities and
reusability were measured and which implementations were used.

4.1 Description of Data

Since we want to solve a real problem we want to measure performance on real
data. We have access to an annotated relevant data set in the HR domain.
We will denote this data set as the domain data set. This real-life data is not
available for publishing as it contains confidential information.We therefore in-
clude modified versions of the Abalone and Allhypo Thyroid data sets.1 These
benchmark data sets are often used to reflect situations where a strong class
imbalance is incorporated in the problem description [18] [28] [52]. They are
both characterised by the presence of multiple minority classes and are often
used to simulate unbalanced classification tasks. Note that we introduce the
assumption of different ‘classes’ to be present given our the problem definition:
it originally only mentions anomalies, noise and normal points. This ‘transfor-
mation’ of classification data to data for our problem statement is necessary, as
there are no benchmark data sets tailored for our problem statement as far as we

1https://archive.ics.uci.edu/ml/datasets.html

36

https://archive.ics.uci.edu/ml/datasets.html

know. An exact description of this transformation can be found in Section 4.2.
We continue to describe the background of the benchmark data.

The Abalone data set originates from an original biological study [44]. The
data was gathered with the goal of predicting the number of rings for specimen
of a family of sea snails based on physiological measurements such as sex, length,
height, weight, etc.

The Allhypo Thyroid data set was constructed as part of a study in the
Machine Learning domain [53]. It describes patients suspected of having Hy-
pothyroidism, a common disorder of the endoctrine system in which the thyroid
gland does not produce enough thyroid hormone. The data was gathered with
the goal of predicting the presence and type of hypothyroidism based on at-
tributes such as age, sex, and medical details such as the administered medicine,
various measurements of hormone levels and (part of) the medical history of the
patient. The data set contains individuals without hypothyroidism (‘negative’
class), individuals with hypothyroidism caused by a malfunctioning of the thy-
roid gland (‘primary’ class), individuals in an early stage of hypothyroidism in
which the severity and completeness of symptoms are lower than for primary hy-
pothyroidism (‘compensated’ class) and individuals with hypothyroidism with
a specific cause (‘secondary’ class).

Categorical features were transformed into numerical features as ‘dummy
variables’ for all data sets. For the supervised components all data was scaled
to [0, 1]. The same scaling was used for training and test samples. No other
normalisation was applied.

4.2 Establishing Ground Truth

The labels for the real life data set were obtained from a domain expert. Ideally,
all entries would have been labelled, but this turned out to be too time con-
suming. Thus, all anomalies found in the original pre processing of the data as
described in Section 1.1 were used the starter anomaly entries. In order to avoid
misclassifying anomalies that were not found by the original pre processing, the
labels for entries in the 10% of outlier scores for the LOF, LOCI and SSAD
method were obtained in addition. This yields a total of 2.30% anomalies out
of 1262 instances.

Making a distinction between anomalies and noise on the publicly available
(Abalone and Allhypo Thyroid) data sets is problematic as no domain expert
is available for this data. A common strategy to solve this problem is to use a
data set with multiple minority classes and select one (or multiple) of these as
anomalies. The Abalone data set is generally used for validation for classification
and regression methods. We proceed by describing how this differentiation was
made in this research.

The Abalone data set originally consists of 27 classes, which denote the
number of rings found in observed abalone (no specimen with 28 rings in the
sample). These were transformed into two classes as depicted in Figure 4.1:
all entries from classes one up to five (1.83% of 2675 instances) were selected

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 29

Class

F
re

qu
en

cy

0

100

200

300

400

Figure 4.1: Histogram of occurrences of classes in the original Abalone data
set. The four leftmost bars (black) form an artificial ‘anomaly’ class. All other
classes are regarded as ‘normal’. The data set contains minority classes at the
rightmost tail as well (white), which can be regarded as the ‘noise’.

to form an artificial anomaly class. The remaining classes (98.17%) form the
non-anomalous cases. This latter set includes minority classes 20 to 29 with
roughly the same number of instances as the anomalous class with 1.98% of the
total data to represent the ‘noise’.

For the Allhypo Thyroid data set, all entries containing missing data were re-
moved. The remaining ‘primary hypothyroid’ (individuals with hypothyroidism
caused by inadequate functioning of the thryoid gland itself, 2.57% of 1946)
instances represent the anomalous class. The ‘negative’ class (individuals with-
out hypothyroidism, 91.98%) represents the normal cases and the ‘compensated
hypothyroid’ cases (individuals in which hypothyroidism is in a starting phase
characterised by some of the symptoms of primary hypothyroidism, 5.45%) rep-
resent the ‘noise’. The only instance with the ‘secondary hypothyroid’ was
removed, resulting in a distribution that is visualised in Figure 4.2.

38

compensated hypothyroid negative primary hypothyroid

Class

F
re

qu
en

cy

0
50

0
10

00
15

00

Figure 4.2: Histogram of occurrences of classes in the Allhypo Thyroid data set.
The ‘compensated hypothyroid’ class (leftmost, white bar) forms the ‘noise’
class. The ‘negative’ class represents all ‘normal’ individuals. The ‘primary
hypothyroid’ class (rightmost, black bar) forms the anomalous class.

4.3 Quality of Classifier

We have seen how the ‘ground truth’ of the class labels was established in
Section 4.2. In this section, a way to compare the outputs of a classifier with
this ground truth is described. As we have seen in Section 3.1, all components
of the proposed approach output a per-instance anomaly score. Such a score
can be converted into a binary classification by choosing a decision threshold θ:
all instances with an anomaly score > θ are classified as outlier, all instances
with an anomaly score < θ as normal. By varying the θ the performance
metrics error rates can be influenced, as described into further detail below.
We proceed by considering some classifier performance metrics for our anomaly
detection task. For each method we note shortly how varying θ affects the result
as measured by that metric. Finally, we argue that a metric called AUC-PR
seems most suitable for comparing classifiers in the anomaly detection domain
and that another metric named F1 score seems the most useful for assessing the
performance of a combination of classifier and θ.

The (arguably) most simple evaluation metric for classifiers is accuracy :

Accuracy =
TP + TN

Total
(4.1)

where TP , TN and Total are defined in Table 4.1. The number of TP and TN
can be influenced by adjusting the decision threshold θ: a more conservative θ is
expected to increase TP whilst decreasing TN and vice versa. This metric is not

39

actual

positive (+) negative (−)

predicted
positive (+) TP FP PP

negative (−) FN TN PN

AP AN Total

Table 4.1: Example confusion matrix. Positive predictions and actuals are
denoted by a +, negatives by a −.

very informative for classifying outliers or anomalies, as the number of correct
predictions might be very high if every point is classified as a normal point.
Outliers and anomalies are rare by definition, which might lead to seemingly
high accuracy when little anomalies are present.

Metrics that are able to take class imbalance into account should express
the relation between the concepts in the confusion matrix in Table 4.1 better.
Consider the following definitions:

Precision =
TP

PP
(4.2) Recall =

TP

AP
(4.3)

False Positive Rate = FPR =
FP

AN
(4.4)

which are more suitable in the case of class imbalance. They are used to con-
struct two curves that visualise effects of adjusting θ: the Receiver Operator
Characteristics curve (ROC curve) and the Precision-Recall curve (PR curve)
which will be described next.

The ROC curve plots Recall (also known as True Positive Rate or TPR)
against False Positive Rate (FPR). By doing so, a monotonic ascending curve
towards (1, 1) is formed. This facilitates comparisons between classifiers: the
method or hyperparameter setting corresponding to the curve that dominates all
other curves can be said to have superior overall performance. In addition, ROC
curves aid in finding the right hyperparameter setting to achieve the desired
Recall and FPR scores: since the ROC curve contains the full range of possible
TPR and FPR scores, the trade off between these metrics by varying θ can be
assessed at a glance. Generally, a liberal decision threshold θ leads to a high
TPR at the cost of an increasing FPR.

As pointed out in [15], however, ROC curves are not useful in the presence of
a strong class imbalance or when the types of errors should be weighted differ-
ently. Consider the hypothetical confusion matrices for two separate methods
in Table 4.2. Next compare the derived scores for Precision, Recall and FPR:

40

Method A Method B

Precision 40/200 = 0.2 40/50 = 0.8

Recall 40/50 = 0.8 40/50 = 0.8

FPR 160/4950 ≈ 0.032323 10/4950 ≈ 0.002020

The difference in performance of the methods is poorly represented in the
FPR scores, as they are so small that any subtleties get lost. Comparing PR
curves will better reflect differences between methods than comparing ROC
curves when the number of false positives is expected to be relatively high.
Making a distinction between a small set of entries and a large one is the goal
in anomaly detection tasks, so we can expect this situation to be present often.
Precision and Recall and their interaction are therefore more suitable for com-
paring classifiers in the anomaly detection domain. For Precision and Recall, a
more liberal decision threshold θ is expected to result in a higher Recall at the
cost of a lower Precision.

The method or hyperparameter setting that yields a PR curve that dom-
inates the other curves can be viewed as having the best performance as it
provides a more favourable trade-off between Precision and Recall. In order to
convert PR curves into single-point scores, a measure of the area under the PR
curve can be used (AUC-PR). We will therefore use AUC-PR when comparing
classifier performance.

In order to determine how well a classifier ultimately performs the task
of anomaly detection, however, the AUC-PR is not very useful as it describes
performance of a classifier over an entire range of θ, whereas actual classifications
can only be made after a specific decision threshold θ has been chosen. In order
to select the optimal setting on the PR curve, a harmonic mean of Precision
and Recall known as the F1 score can be used:

F1 score = 2 ∗ Precision ∗Recall
Precision+Recall

(4.5)

actual actual

+ − + −

prediction
+ 40 160 200 40 10 50

− 10 4790 4800 10 4950 4950

50 4950 5000 50 4950 5000

Method A Method B

Table 4.2: Example confusion matrices for hypothetical methods A and B on
an imbalanced data set. Positive predictions and actuals are denoted by a +,
negatives by a −.

41

In the following section we will describe how the AUC-PR and F1 score are used
for hyperparameter selection.

4.4 Combining Component Outputs

The outputs of the unsupervised and supervised components can be turned into
a final classification by various strategies. Example strategies are averaging,
fixed weighted averaging and adaptive weighted averaging. In fixed weighted av-
eraging, outputs are averaged using preset weights, whereas in adaptive weighted
averaging the weights can be set as a function of e.g. the number of labelled
training examples or based on hypothetical performance given the available
labels. Weighted and adaptive weighted averaging prove promising, as the su-
pervised component might outperform the unsupervised component when a suf-
ficiently large labelled training set is present, whereas the unsupervised method
can be expected to outperform the supervised method when there are insuffi-
cient labelled training examples. Expecting the supervised method to be able
to leverage class labels effectively, we hypothesise that it will outperform the
unsupervised component when a sufficient number of class labels is available. In
order to limit the scope of this research, we therefore select a weighted average
with weights set to 0 and 1 for the unsupervised and supervised components
respectively, i.e. we let the supervised component be the sole contributor to the
classification into {anomaly, non-anomaly}.

4.5 Hyperparameter Selection

The unsupervised LOF and LOCI and the supervised SSAD and C-SVC com-
ponents all require some hyperparameters to be set. In order to evaluate the
methods in a fair manner, the optimal hyperparameters have to be selected.
This section describes how different hyperparameters affect classifier perfor-
mance, how different hyperparameters were tested and lists the final selection
of hyperparameter settings. We elaborate on the validity of using optimal hyper-
parameter settings and analyse the sensitivity of the methods involved in order
to get an intuition on performance in the general case. We include some pointers
on how parameters can be selected when the optimal settings are unknown.

4.5.1 Unsupervised Component

The unsupervised component never outputs an actual classification in our set-
ting (see Section 4.4), but only ranks instances according to an outlier score that
is used as input for the query selection mechanism. AUC-PR is sufficient in this
situation and F1-score provides no relevant information since no actual classifi-
cation decisions are made (see the previous section for details on these metrics).
We are therefore only interested in AUC-PR scores for the unsupervised com-
ponent. We will continue to describe which hyperparameters are required for
LOF and LOCI and how the final hyperparameter setting was determined.

42

The original authors of the LOF method advise to calculate the LOFk(i) for
a range of k for each instance i and select the highest outcome to determine
an outlier score for i. The LOF method thus has two parameters kmin and
kmax that denote the range of k. The lowest number of points to constitute
a cluster should be represented by kmin. The upper limit kmax represents the
number of points that may be in a cluster whilst still being regarded as outliers.
The values for these hyperparameters can easily be set by the expert in some
sensible way, e.g. as a percentage of the total number of instances in the data
set. In this research, kmin, kmax yielding the best results according to a grid
search in [1, 200] for both kmin and kmax for each data set were used in further
experiments. See Figure A.1 in Appendix A for a visualisation.

Judging from Figures A.1 and A.2 from Appendix A, the LOF method is
not very sensitive to the kmin and kmax settings. The top-5 value pairs show
PR-curves that are almost identical for all data sets and even considering the
PR-curves for the top-1000 we see mostly equal curves. Although all further
performance analyses in which the LOF method is included should be viewed
as upper limits to performance, actual performance is not expected to degrade
much when optimal kmin and kmax are unknown throughout this section.

For the LOCI method, a parameter rmax is used to denote the maximum
range of instances to be in each other’s counting neighbourhood Ncounting. The
authors advise to set the value so that all points are always in each others
Ncounting for a precise result, i.e. by using the distance of the two points with the
highest pairwise distance. As can be seen in Figures A.3 and A.4 in Appendix A,
however, this value for rmax does not achieve the best results. The rmax yielding
the best result was selected in order to make sure all methods are compared with
equally ‘optimized’ hyperparameters.

Judging from Figures A.3 and A.4 from Appendix A, the LOCI method is
somewhat sensitive to the rmax hyperparameter value. The top-5 values show
PR-curves that are almost identical for all data sets, however, when considering
the top-1000 we see strongly varying shapes. Performance analyses mentioned
further below should therefore be interpreted as an upper limit on performance
when LOCI is involved. Performance is expected to degrade in the typical case
when the optimal rmax value is unknown.

4.5.2 Supervised Component

Both of the supervised components SSAD and C-SVC require two hyperparam-
eters to be selected. Parameter C is a weight for penalizing slack variables. It
thus represents the trade-off between complexity of the decision surface and the
number of misclassified instances. A less liberal (i.e. higher valued) C leads
to less errors on training data, a tighter fit of the enclosing hypersphere to the
training data for SSAD and of the separating hyperplane between the classes
for C-SVC. This can generally only be accomplished by a more ‘complex’ shape.
A more liberal (i.e. lower valued) C allows for more errors on training data and
thus a looser fit to the training data. The parameter C can thus be seen as a
way to control over- and underfitting on the training data.

43

The second parameter is the kernel used. As SSAD poses a restriction on
the used kernel due to the required convexity of the optimization problem we
only use the Radial Basis Function (RBF) kernel. The RBF kernel has a pa-
rameter γ which denotes the peakiness of the feature space. A lower γ leads to
a more smooth surface, whereas a higher γ leads to a more peaky surface. This
parameter can thus be interpreted as an inverse of the ‘influence’ that a data
point has (i.e. in being an anomaly or non-anomaly) and thus also influences
the models’ capability to ‘generalise’ from given input: a higher γ leads to a
tighter fit to the training data and thus to more accuracy on the training set,
whereas a lower γ leads to a looser fit and thus to less accuracy on the training
set.

The optimal combination of hyperparameters was determined on a per-data
set basis for both methods in the supervised component. The results can be
found in Appendix B in Figures B.1 and B.2. Judging from the former, SSAD
is rather sensitive to hyperparameter settings and no clear pattern can be iden-
tified. Generally, lower γs yield better performance than those in the higher
ranges. The exception to this is the Allhypo Thyroid data set, which contains
a lot of binary attributes that are converted to 0 and 1 during data transfor-
mation. It can be understood that this leads to lower distances than numerical
attributes with higher ranges. The grid search for C-SVC in Figure B.2 shows
a more clear pattern: the interplay between γ and C can be seen from the diag-
onal shape in the plots. The difference in optimal hyperparameter values over
different data sets is clear here as well. The optimal values for hyperparameters
γ and C are hard to determine as their interpretation is not straight-forward.
All further performance analyses should thus be viewed as upper limits on per-
formance. The performance for both methods is likely to be less in the case the
optimal hyperparameter settings is unknown.

4.5.3 Parameter Settings

The hyperparameter settings in Table 4.3 were determined as described in the
previous subsections as optimal on not-normalised data sets. They were used
throughout further experiments. Please refer to the previous subsections for
details and suggestions on determining these values.

LOF LOCI SSAD C-SVC
kmin kmax rmax C γ C γ

Domain data set 26 29 3900 1.08e-04 2.59e-02 7.28 2.40e-01
Abalone 91 91 0.8 5.74e-03 4.89e-03 1.27e-02 1.49
Allhypo Thyroid 198 199 33 78.80 7.88e-03 3.04e-01 853.17

Table 4.3: Optimal hyperparameter settings per data set.

44

4.6 Generalisability

Generalisability is the capability of a Machine Learning (M.L.) method when
applied to a data set other than the set it was trained on (the training set). The
other set is generally known as the test set. When an M.L. method performs well
on unseen data, this indicates that it has captured patterns from the training
set that are useful in the real world, rather than capturing incidental patterns,
which is known as overfitting. Generalisability is an interesting metric in our
use case, as it quantifies requirements 3 and 4 from Chapter 3: it expresses how
well a previously trained model can be ‘reused’ without any input by the expert.

Regarding generalisability, we differentiate between two scenarios: the sce-
nario where all data is available from the onset and the scenario where a pre-
viously trained model is applied to unseen data. The first scenario represents
discovery of anomalies in a novel yet completely available data set, whereas
the second scenario represents detection of anomalies for data sets that may
change after a model has been trained. This latter scenario is interesting as all
anomalies found in this scenario require no additional effort from the expert.
We are interested in the capabilities of such a method to fully autonomously
detect anomalies in new data sets, i.e. its generalisability.

In the first scenario, the method is trained and applied to the same data set.
No cross-validation or other generalisability-measuring techniques are applied.
In the second scenario, separate training and test sets represent the initial and
new data sets respectively. Only the performance on the test set is relevant here.
Five-fold cross validation was applied in these situations to measure the gener-
alisability capabilities.A nested cross-validation was considered, however it was
considered inappropriate due to too little positive (i.e. anomalous) validation
instances in the inner cross-validation.

The unsupervised component typically has access to all data. Splitting data
into ‘train’ and ‘test’ sets is therefore not necessary when only the unsupervised
component is involved. For all runs in which only the supervised component
is involved (i.e. hyperparameter selection, component performance analyses)
a five-fold cross-validation was used to measure generalisation capabilities. To
test the entire framework – e.g. a combination of supervised and unsupervised
components, query and output combination mechanisms – performance metrics
on both the test and training data were obtained.

4.7 Learning Abilities

In order to measure how our method performs with respect to limited availability
of the domain expert, we want to compare the number of points labelled by the
expert (the number of hints) with some performance metric. We will use the
F1 score introduced in Section 4.3 and see how it is influenced by the number of
labelled points by plotting it against the number of labelled points. This kind
of plot is generally known as the learning curve.

When assessing the learning ability, we are interested in the learning abilities

45

in the scenarios of a single and multiple data uploads. In the former, all data is
present initially and the goal is to acquire all labels with as little queries to the
expert as possible. For the learning abilities that span across data uploads we
hold out part of the data set and use this only for validation.

4.8 Used Implementations

For the LOF method, an implementation from the ‘DMwR’ package of the
statistical package R was used [64] [54]. An implementation from the ‘ELKI’
software package was used for the LOCI scores [56]. Scaling was performed using
the ‘LIBSVM’ package [10]. The original implementation of the author was used
for SSAD.2 The C-SVC implementation from Scikit-learn was used [46]. Scikit-
learn was also used for cross validation, parameter grid search, calculation of
results (AUC-PR, F1 score, etc.) and the creation of plots.

2https://github.com/nicococo/tilitools

46

https://github.com/nicococo/tilitools

Chapter 5

Results

This chapter contains the results for the experiments described in the previous
chapter. The results for the unsupervised and supervised components with
optimal parameters are presented in detail. Next, the results of our proposed
method for a varying number of hints by the expert are presented. A brief
overview of our findings can be found first.

Local Outlier Factor (LOF) performs equally good or better than Local Cor-
relation Integral (LOCI) for all data sets under consideration and was therefore
selected as the unsupervised component. For the supervised component, the
C-Support Vector Classifier (C-SVC) outperforms Semi-supervised anomaly de-
tection (SSAD) for all data sets under consideration.

The proposed selection mechanism requires roughly 20% and 50% to reach
maximum performance on the training and test data respectively, whereas the
random selection mechanism requires all labels to achieve maximum perfor-
mance. Performance on the training set, in which the labels for all instances
can be queried, is better than on the test set, which is characterized by the
absence of some data during training. Overall, incorporating user feedback only
slightly increases performance when compared to a basic unsupervised approach,
even when all labels are available. Expert feedback therefore remains valuable,
even when a model was trained on an entire data set already.

5.1 Unsupervised component

The Precision-Recall (PR) curves from Figure 5.1 show the results of LOF and
LOCI using per-dataset optimal parameters (see Sections 4.5.1 and 4.5.3 for
details). LOF outperforms LOCI for the domain and Allhypo Thyroid data
sets. For both data sets, the PR-curves for LOF dominate the LOCI curves
almost completely: no matter what the preferred Precision-Recall trade-off is,
LOF outperforms LOCI. The AUCs for LOF vs LOCI are 0.369 and 0.617 vs
0.158 and 0.390, i.e. the AUCs for LOF are 1.5 and 2.3 as much as the AUCs for
LOCI for these data sets. The curve for the remaining Abalone data set resides

47

LOF LOCI
max(F1) µ(F1) σ(F1) max(F1) µ(F1) σ(F1)

Abalone 0.209 0.082 0.048 0.226 0.067 0.051
Allhypo Thyroid 0.637 0.443 0.124 0.585 0.171 0.160
Domain 0.511 0.093 0.081 0.255 0.144 0.050

Table 5.1: F1 scores for LOF and LOCI on all data sets.

at the lower regions of the graph. The LOCI method performs only a little better
on this data set with an AUC of 0.096, compared to an AUC of 0.089 for LOF,
which is 1.07 as much. For this data set, however, both methods outperform
each other for different Precision-Recall trade-offs. Considering that the AUCs
are almost equal on this data set, performance could generally be considered
as equal. Because of time constraints, we have chosen LOF as the preferred
unsupervised component in further analyses. The significance of these results is
further discussed in Section 6.5.

Sudden drops in Precision that do not yield any additional Recall (such as
for at for LOF on the domain data set at a recall of little of 0.4) denote that the
method is not capable of distinguishing amongst anomalies and non-anomalies
for this part of its anomaly ranking: the rank by anomaly score matches the true
rank of anomalies very poorly for these sections of the data set. The ‘price’ in
Precision that is to be paid for additionally retrieved anomalies is relatively high
at these drops, which leads to long sequences of normal points being reported
as ‘anomaly’. For example, the drop in performance for the LOCI method on
the Allhypo Thyroid data set near the Recall of 7.5 would result in roughly
20 additionally misclassified anomalies, whilst no additional correctly classified
anomalies are gained.

Consider the Precision values at a Recall of 1.0 for all curves: at a Recall
of 1.0, all anomalies are correctly marked as such. For most method–data set
combinations, Precision approaches 0.0, meaning that almost all points have to
be labelled as anomaly in order to achieve a Recall of 1.0, the only exception
being LOF on the Allhypo Thyroid data set.

There is a large difference in PR-curves for both methods on the domain
data set: judging from the sharp decline in Precision at lower Recall-regions for
LOCI, it incorrectly assigns some of its highest anomaly scores to non-anomalies.
This contrasts with the performance for LOF, which only steeply declines at a
recall of 0.4. It is furthermore interesting that the Precision for LOCI is better
for a higher Recall on this data set.

48

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for two variants of the unsupervised component
LOCI (abalone dataset), AUC=0.0959

LOCI (domain data set), AUC=0.1597

LOCI (thyroid dataset), AUC=0.3902

LOF (abalone dataset), AUC=0.0890

LOF (domain data set), AUC=0.3692

LOF (thyroid dataset), AUC=0.6174

Figure 5.1: Precision-Recall curves for the unsupervised LOF and LOCI meth-
ods on all data sets under consideration.

5.2 Supervised component

The results using five-fold cross validation and per-dataset optimal parameters
(see Sections 4.5.2 and 4.5.3 for details) for two supervised methods are listed
in Table 5.2. The C-SVC method outperforms SSAD on all test data. Both of
these methods are outperformed by methods with an unsupervised paradigm.

Note that the comparison between supervised and unsupervised methods
is not based on equally sized test sets: the unsupervised scores are based on
performance on the entire set, whereas the supervised scores are an average of
F1 scores on the five test folds. We assume that any effects of this difference in
test set sizes are accounted for by averaging the F1 scores for the five folds.

The unsupervised methods outperform the supervised methods on all data
sets. This matches the rationale for SSAD, which is primarily based on an
unsupervised method [26]. Interestingly, however, SSAD yields the lowest F1
scores in our experiments. In the original paper, SSAD outperforms traditional
methods only when novel classes of anomalies are introduced, e.g. anomalies
stemming from a different distribution. This could be an indication that in our
scenario, the training and test samples stem from the same distribution, i.e. that
there are sufficiently informative training examples available. Our experiments
were not set up to reflect a situation of novel anomalies in the test set: we did
not engineer our test set to contain anomalies from novel distributions as is done
in the original paper. Although feasible, this explanation is not consistent with
the results from C-SVC and the unsupervised methods. When we assume that
the anomalies in the training set represent the anomalies in the test set well,
we would expect C-SVC to be able to outperform the uninformed unsupervised
methods, since the C-SVC method is theoretically able to differentiate between
anomalies and outliers, whereas an unsupervised method is not.

The inconsistency introduced by the unsupervised methods outperforming

49

Supervised Unsupervised
SSAD C-SVC LOCI LOF

Abalone 0.0 0.038 0.226 0.209
Allhypo Thyroid 0.019 0.136 0.585 0.637
Domain 0.124 0.489 0.255 0.511

Table 5.2: F1 scores for all tested methods on all data sets on the test set
(supervised methods) and training set (unupservised methods). The supervised
methods were tested using five-fold cross validation.

C-SVC under the assumption that the training data represents the test data well
can have various reasons. We identify two independent causes of this inconsis-
tency in this paragraph. Firstly, we optimized F1 score for the unsupervised
methods as we can influence θ directly, but did not do so for SSAD and C-
SVC as we depend on these methods to find the optimal separating hyperplane
themselves. We therefore have to use γ and C to tweak performance, which
are known to be hard to set and might influence each other indirectly. A com-
parison between unsupervised and supervised methods is not representative for
actual performance in this regard. The µ(F1) and σ(F1) scores indicate that the
max(F1) scores are not representative throughout the entire PR curve. How-
ever, the unsupervised methods (LOF especially) appear to be able to perform
well for non-optimal parameters as well from the figures in Appendix A: the
PR curves yielding the top-5 and top-1000 are not very different. Quantifying
the effects of the parameters for these methods is left for future work. Another
possibility is that SSAD and C-SVC are not capable of capturing the complexity
of the underlying relations well enough. This is possibly the case: both LOF
and LOCI by their definition use information on the local density of points to
construct anomaly scores. Local density is not explicitly encoded as input to the
supervised methods and thus part of ‘being an anomaly’ might not be captured
well by only confining regions of the data domain.

5.3 Learning Abilities

From Section 5.1 we have seen the maximal performance for an unsupervised
method. In this section we examine how well our proposed method performs in
comparison. We therefore examine F1 score, Precision and Recall for different
numbers of labels on a training set, i.e. all data is available throughout the
entire method. Furthermore, we are interested in the effects of using our query
mechanism over a random query, which serves as a lower-bound on performance
without our proposed method. Because of time considerations, we only include
results for a combination of the most promising supervised and unsupervised
methods, e.g. LOF and C-SVC. Note that all data is available during query
selection but not during training of C-SVC for final classification. Only data for
which labels are available are used during this phase, as C-SVC is not capable

50

Proposed method Unsupervised methods
Abalone 0.056 0.226
Allhypo Thyroid 0.681 0.637
Domain 0.609 0.511

Table 5.3: Comparison of maximum F1 scores on training data for the proposed
method and for unsupervised methods. Bold denotes per-row maximum.

of taking instances with missing labels into account.
Judging from Table 5.3, only a slight F1 score increase over the unsupervised

methods is achieved when using the available labels for the Allhypo Thyroid and
domain data sets. The proposed method is incapable of outperforming the un-
supervised methods for the Abalone data set. Further investigating performance
differences by comparing Precision and Recall trade-offs in Figures 5.1 and 5.2
in Table 5.4, our proposed method does show a number of beneficial charac-
teristics. It achieves a Recall of 1.0 with reasonable Precision for the domain
and Allhypo Thyroid data sets (Table 5.4). Especially for the domain data set,
on which the unsupervised methods fail to achieve a practical Precision at a
Recall > 0.5, the benefits of using the acquired labels are noteworthy: a Recall
of 0.5 is achieved at less than 20% of labelled instances with a Precision > 0.4
(Figures 5.1 and 5.2). Regarding performance on the training set, our method
mainly outperforms the unsupervised methods whenever a high Recall is re-
quired and only when a sufficient amount of labels is available. The significance
of these results is discussed in Section 6.5.

It is noteworthy that an F1 score of 1.0 is not achieved for any data set –
even when all labels are available during training. This indicates that our clas-
sifier is unable to define a good separation between the classes in the training
examples. For C-SVC, it means a separating hyperplane in which all instances
lie at the correct side could not be computed. This situation is known as the
‘non separable case’. Assuming that our model can express sufficient complex-
ity, non-separability indicates that out of multiple identical instances, some are
reported as anomalies whereas others as non-anomalies. By using appropriate
hyperparameters, F1 scores of 1.0 on the training set were obtained for all data
sets, indicating that there are no identical instances that belong to different
classes.

In a worst-case situation, the expert inspects instances in an arbitrary order,
thus labelling them randomly. In order to gain insight in how our informed
query mechanism affects performance, we compare the dashed and solid lines in
Figure 5.3 and we compare the maximum achieved F1 scores in Table 5.5. We
clearly see the benefits from using an informed query mechanism over random
querying. The learning curves for the proposed query mechanism dominate
the random query mechanism for the domain and Allhypo Thyroid data sets.
The proposed query mechanism yields higher maximum F1 scores and requires
less labels to do so. The performance on the abalone data sets is comparable
amongst the query mechanisms.

51

Proposed method Unsupervised
max(Recall) at Precision at % labelled Precision Method

Abalone 0.775 0.026 69.3% 0.031 LOCI
Allhypo Thyroid 1.0 0.403 78.2% 0.184 LOF
Domain 1.0 0.367 63.9% 0.038 LOF

Table 5.4: Comparison of Precision scores at maximum Recall on training data
in proposed method and in unsupervised method. When maximum Recall is
achieved for various ‘at % labelled’ and thus various corresponding Precision
scores, the lowest ‘at % labelled’ is shown as further labelling would not uncover
additional anomalies. Note that the oscillations at the beginning of the graph
have been omitted, as they include models that ‘cheat’ by classifying everything
as anomaly. Bold denotes per-row maximum Precision.

0.0 0.2 0.4 0.6 0.8 1.0
% labelled

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Recall learning curves on training data

proposed selection mechanism (abalone dataset)

proposed selection mechanism (domain dataset)

proposed selection mechanism (thyroid dataset)

(a) Learning curve based on Recall.

0.0 0.2 0.4 0.6 0.8 1.0
% labelled

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

Precision learning curves on training data

proposed selection mechanism (abalone dataset)

proposed selection mechanism (domain dataset)

proposed selection mechanism (thyroid dataset)

(b) Learning curve based on Precision.

Figure 5.2: Learning curves based on Precision and Recall on the training set.

Proposed selection Random selection
max(F1) at % labelled max(F1) at % labelled

Abalone 0.056 88% 0.052 90%
Allhypo Thyroid 0.681 41% 0.579 100%
Domain 0.609 13% 0.557 100%

Table 5.5: F1 scores for the proposed selection strategy and a random selec-
tion on all data sets on the training set. LOF and C-SVC were used as the
unsupervised and supervised component.

52

0.0 0.2 0.4 0.6 0.8 1.0
% labelled

0.0

0.2

0.4

0.6

0.8

1.0

F
1

 s
co

re

F1 score learning curves on training data

proposed selection mechanism (abalone dataset)

proposed selection mechanism (domain dataset)

proposed selection mechanism (thyroid dataset)

random selection (abalone dataset)

random selection (domain dataset)

random selection (thyroid dataset)

Figure 5.3: Learning curves for the proposed method on all data sets on the
training set. The ‘random selection mechanism’ is included for comparison. For
the ‘random selection’ results, an average of 25 runs is used to remove the effects
of incidents.

5.4 Generalisability

Knowing how many labels we need to query in order to achieve a desired per-
formance on training data, we do not yet know how well our proposed method
will perform on test data. Recall that our model is intended to be used in a
setting where multiple data uploads are possible and where it would be possible
to apply a previously trained model on new data sets. We do this by looking
at the generalisability of our proposed model, e.g. by investigating performance
on a separate test data through five-fold cross validation. During training, not
all data can be requested by our proposed query mechanism. The effects of this
limitation in choice for labelling can be found in this section.

The differences between the scenarios are clear when comparing Figure 5.3
with Figure 5.4 and Table 5.5 with Table 5.6. All methods perform generally
better on training data. The difference in performance on the Allhypo Thyroid
data set is bigger than the difference for the domain data set. Similarly to the
results listed above, the performance on the Abalone dataset is very different
from the other two data sets.

Even though performance degrades when not all instances are known up
front, the proposed selection mechanism still increases performance and requires
less labelled instances to reach the optimal results (from 67% up to 9% of total
number of instances).

The learning curves based on Recall and Precision from Figure 5.5 contain
the same oscillations as those in Figure 5.2 in the beginning stage. The Recall
reaches maxima of roughly 0.6 for the abalone and domain and 0.2 for the
thyroid dataset. Precision at these points is nearing 0.0 (abalone), 0.6 (domain)
and 0.1 (thyroid). Furthermore, we note that the Recall for the Allhypo Thyroid

53

0.0 0.2 0.4 0.6 0.8 1.0
% labelled

0.0

0.2

0.4

0.6

0.8

1.0

F
1

 s
co

re

F1 score learning curves on test data

proposed selection mechanism (abalone dataset)

proposed selection mechanism (domain dataset)

proposed selection mechanism (thyroid dataset)

random selection (abalone dataset)

random selection (domain dataset)

random selection (thyroid dataset)

Figure 5.4: Learning curves for the proposed and a random selection mechanism
on test data. A ‘random selection mechanism’ is included for comparison. For
the ‘random selection’ results, an average of 25 runs is used to remove the effects
of incidents.

Proposed selection Random selection
max(F1) at % labelled max(F1) at % labelled

Abalone 0.052 9% 0.038 95%
Allhypo Thyroid 0.164 42% 0.137 99%
Domain 0.491 67% 0.489 100%

Table 5.6: F1 scores for LOF and LOCI on test data. LOF and C-SVC were
used as the unsupervised and supervised component.

54

0.0 0.2 0.4 0.6 0.8 1.0
% labelled

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Recall learning curves on test data

proposed selection mechanism (abalone dataset)

proposed selection mechanism (domain dataset)

proposed selection mechanism (thyroid dataset)

(a) Learning curve based on Recall.

0.0 0.2 0.4 0.6 0.8 1.0
% labelled

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

Precision learning curves on test data

proposed selection mechanism (abalone dataset)

proposed selection mechanism (domain dataset)

proposed selection mechanism (thyroid dataset)

(b) Learning curve based on Precision.

Figure 5.5: Learning curves based on Precision and Recall on test data.

data set does not improve after having labelled little over 40% of the data set.
This might be caused by the lack of additionally found anomalies after this point
and/or because of a lack of anomalies representative to those in the validation
set during training.

55

Chapter 6

Discussion

In this chapter, we reflect on the choices made in this research and investigate
key assumptions and their implications. First, we treat a contradiction in the
requirement of being able to handle a lack of a priori knowledge and the varying
definitions of outliers. Secondly, we investigate the contribution of this research
to existing work. We continue this chapter by a discussion on some of the results
in order to enlarge the comprehension of the problem and methods used in this
chapter, including some suggestions for further research. This chapter is closed
by some remarks on the usage of the proposed method in a real-world scenario.

6.1 Lacking a priori Knowledge

The task of detecting outliers without a priori knowledge requires some closer
inspection. From the analysis of related work in Chapter 2, we have seen how a
taxonomy of methods can be built from different definitions of the term outlier.
It can be understood that different definitions of the term outlier are expected to
lead to different performance on a given data set: when the definition of outlier
that is encoded into the data set by the actual class labels or by judgement
of the expert matches the definition that drives the method being applied to
the data, we can expect performance to be optimal. Consequently, there is a
relation between the choice for unsupervised outlier detection methods and up-
front knowledge on the data or problem domain. We proceed to investigate how
this relation of unsupervised methods with predefined definitions of ‘outlier’
affects our ‘no a priori knowledge’ requirement.

An up-front notion of what an outlier looks like, is of course a form of a priori
knowledge. Any choice for an unsupervised method should come from some
notion of outlier, which conflicts with our goal of finding outliers without a priori
knowledge. This contradiction could be seen as the end point for any research
in this direction. A further inspection of the various unsupervised methods,
however, shows that the various definitions of outliers make assumptions that are
of a different nature and of a different strictness. Some methods, for example,

56

require an assumption on the underlying distribution of the data or on the
presence of globally consistent correlations, whereas others have less far-reaching
assumptions such as data being clustered in some form or a distance metric being
applicable to the data set.

We have attempted to go on with our research by selecting unsupervised
methods with relatively narrow assumptions and robustness against specific
characteristics of the data set, by using density-based methods with robustness
against differences in local density. Although this alleviates the problems with
a lack of up-front knowledge somewhat, it does not solve these problems com-
pletely. Some further research in this direction could be to find a definition
of outlier that matches definition of the expert more explicitly. An alternative
approach to solving the problem in this research is to reformulate it as learn-
ing the correct outlier definitions based on user feedback. A simple approach
would be to create multiple models simultaneously and select the one with the
best performance. Labels could be queried via the ambiguity and low likelihood
strategy as in [47]. A more sophisticated approach would consist of applying
user feedback in finding the best combination of multiple unsupervised models,
a technique that is known as ensemble learning. The former suggestion is more
straightforward than the latter, whereas the latter is more flexible. The latter
suggestion is specifically interesting in the light of the requirement of lacking a
priori knowledge, as it also does not require the assumption of a single definition
of ‘outlier’ that matches all of the data well.

6.2 Novelty of Proposed Method

The notion of separating noise and anomalies through a combination of unsu-
pervised and supervised methods as presented in this research is uncommon in
this domain. The lack of an expert that is willing and accessible to provide
correct labels might be one of the causes for this. We note that in our use case,
such an expert is not only accessible, but would have to do the labelling regard-
less of our method being in place. The costs that are introduced by adopting
the proposed method would therefore fully consist of training the model during
data set validation once a robust implementation has been made.

The novelty in the approach taken lies in iteratively training a (possibly
fully) supervised component by feeding a selection mechanism with the results
from both a supervised and an unsupervised model. Similar attempts either
use an unsupervised model only once or contain a single semi-supervised model
to achieve ‘active learning’ [69] [63] [47]. We believe this contribution could be
extended by populating the unsupervised component by an ensemble of unsu-
pervised models. This opens the direction for finding different kinds of outliers
efficiently, from which the supervised component might benefit heavily. Another
extension would be incorporating outlier scores produced by the unsupervised
component in the final classification. Both of these suggestions are possible
directions for further research.

57

6.3 Limitations of Selection Mechanism

Our proposed selection mechanism is based on (1) the rank-based disagreement
of the supervised and unsupervised component and (2) the margin strategy.
We derive anomaly ranks for the supervised component from the distances of
instances to the decision boundary. Since the margin strategy is also based on
distance to the decision boundary (see Section 3.4 for details), both elements of
the proposed selection mechanism are based on the same heuristic. This might
result in some regions of the data set not being investigated properly. When
instances in a region are far from the decision boundary, we fully depend on the
unsupervised method to flag these these points as possible outliers. We propose
two extensions to our method that could be investigated in future work.

The first proposed extension relies on employing a stochastic margin strat-
egy in which a selection probability is assigned to each instance; the actual
selection is by random selection based on the selection probabilities. The selec-
tion probabilities can be determined as a function of the distance to the decision
boundary. The most straightforward approach would sum all distances and give
each instance part of a roulette wheel that matches its distance as a proportion
of this sum. This ‘roulette wheel’ approach can be modified into more elaborate
schemes, such as ranking all instances based on distance and sampling them
according to some distribution based on the order. For example, sampling from
the ranked instances by the exponential distribution would lead to the closest
instances having a high chance of being selected.

Another more direct strategy to counteract the problem of only querying
instances in a specific region of the data domain can be found in [26]. An
adjacency matrix in which instances that are close-by is built up. Labelled
instances propagate their labels to their k -nearest neighbours as ‘dummy labels’.
Regions of the data that have not been inspected by the expert can be found by
looking for clusters that have no or little labels after propagation. Extending
this adjacency matrix to include robustness against differences in local density
is to be investigated in future work.

6.4 Generation of Labels

As noted in Section 4.2, not all instances in the Domain data set were labelled
by the expert. An original labelling as done by the expert was extended by a
second labelling round in which instances which flagged as outlier from various
methods (LOF, LOCI, SSAD) with various parameter settings. This way of
establishing ground truth has introduced some bias towards these methods in
this research. It is unclear how many instances were originally investigated,
but 10 instances were flagged as anomaly prior to this research. The remaining
19 anomalies were found after labelling about 52 instances elicited by anomaly
detection methods. The bias introduced by this practice could be significant,
which is subject to further investigation. Note that this bias is only present for
the domain data set.

58

6.5 A Note on Generalisability

As we have seen from the Recall learning curve in Figure 5.2a the method can
aid in finding anomalies in a single data set more quickly. It does not require any
class labels to be present initially. The model, however, fails to find a satisfac-
tory number of anomalies on unseen data (Figure 5.5a). A simple unsupervised
method (e.g. LOF) outperforms our proposed method on test data in terms
of its optimal F1 score – taking into account that the unsupservised methods
were optimized on F1 score directly (e.g. by influencing decision threshold θ)
and the supervised methods were optimized on unseen data indirectly (e.g. by
influencing model hyperparameter C and γ). Incorporating the output of the
unsupervised method as suggested previously in this chapter could boost per-
formance here too as apparently the unsupervised method can elicit outliers on
previously unseen data better than the trained supervised models. In addition
to this possibility for further research, we advise to always put some of the pre-
viously unseen data up for labelling to the expert and not rely on a model that
was trained exclusively on a single data upload.

We did not investigate whether the differences between performance of the
unsupervised and supervised methods are statistically significant. Some of the
differences appear significant, e.g. the max(F1) for LOF is slightly over two
times as much as its LOCI counterpart on the Domain data set in Table 5.1,
whereas other differences may be attributable to noise, e.g. the comparison of
performances on the Allhypo Thyroid data set in Table 5.3. In order to get a
good understanding of how well our method generalises, and whether it actually
adds anything to a bare unsupervised methods, a statistical analysis of these
differences is required.

59

Chapter 7

Conclusion

We have presented a framework for efficiently finding interesting outliers in
data sets about which little prior knowledge. We specifically treat the scenario
where an expert is available to provide labels as requested by the framework.
The framework can be described as an active learning approach to anomaly
detection and consists of an unsupervised and a supervised component with a
query selection mechanism.

In order to detect outliers efficiently without a priori knowledge, an un-
supervised method that makes little assumptions on the generating process or
structure of the data is favourable. After examination of several models for
outlier detection we deem the density-based model to be favourable for this use
case: it poses little assumptions on the data and is robust against differences
in local density. We found Local Outlier Factor to be the most suitable in this
class of outlier detection methods.

We have identified supervised anomaly detection as a variant to regular
classification, characterised by a strong class imbalance. We have proposed an
active learning approach to separate anomalies from noise and normal points.
The hypothesis that a semi-supervised model based on an unsupervised SVM-
like model would outperform a more traditional supervised multi-class SVM was
not supported by results. The traditional multi-class SVM outperformed the
specialised SSAD method in all experiments.

We have shown a way of effectively using expert input by querying labels
in an informed way. The proposed selection mechanism alternates querying
for points that are suspected by the unsupervised component with querying
for points about which the actual classifier is uncertain. Final classification
performance was increased by this method both when all data was available
throughout training and when new data was introduced. This query mecha-
nism even enables classification performance to exceed the performance when
all labels are present present with roughly 20% of the labels queried.

Our proposed method has shown a performance gain when all off the data is
accessible for labelling in the training phase. In such a scenario, roughly 75% of
all anomalies were found at a precision of 0.5. The necessity of an unsupervised

60

method when applying data was shown from the detrimental performance on
applying a trained model on wholly unseen data. Using a supervised model
to select a (combination of) suitable unsupervised method(s) based on user
feedback is part of future work.

61

Appendix A

Hyperparameter Selection
Unsupervised Component

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOF for top 5 ranges for parameter k.

k=[26, 29]: AUC=0.3692

k=[25, 29]: AUC=0.3691

k=[16, 30]: AUC=0.3678

k=[21, 30]: AUC=0.3677

k=[39, 40]: AUC=0.3677

(a) Domain dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOF for top 5 ranges for parameter k.

k=[91, 91]: AUC=0.0890

k=[93, 93]: AUC=0.0888

k=[91, 92]: AUC=0.0888

k=[91, 93]: AUC=0.0887

k=[92, 92]: AUC=0.0887

(b) Abalone

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

PR curves for LOF for top 5 ranges for parameter k.

k=[198, 199]: AUC=0.6174

k=[197, 199]: AUC=0.6173

k=[196, 199]: AUC=0.6172

k=[198, 198]: AUC=0.6171

k=[195, 199]: AUC=0.6171

(c) Allhypo Thyroid

Figure A.1: The PR curves for top-5 settings of kmin, kmax for LOF on all used
datasets, based on AUC-PR.

62

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOF for top 1000 ranges for parameter k.

(a) Domain dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOF for top 1000 ranges for parameter k.

(b) Abalone

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

PR curves for LOF for top 1000 ranges for parameter k.

(c) Allhypo Thyroid

Figure A.2: The PR curves for varying values of parameters kmin, kmax for LOF
on all used datasets.

63

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOCI for top 5 settings of parameter rmax.

rmax=3900: AUC=0.1601

rmax=3800: AUC=0.1586

rmax=3700: AUC=0.1580

rmax=4000: AUC=0.1504

rmax=5400: AUC=0.1468

(a) Domain dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOCI for top 5 settings of parameter rmax.

rmax=.8: AUC=0.0958

rmax=.9: AUC=0.0944

rmax=1: AUC=0.0894

rmax=.6: AUC=0.0841

rmax=.5: AUC=0.0772

(b) Abalone

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOCI for top 5 settings of parameter rmax.

rmax=33: AUC=0.3902

rmax=32: AUC=0.3877

rmax=31: AUC=0.3794

rmax=30: AUC=0.3750

rmax=29: AUC=0.3673

(c) Allhypo Thyroid

Figure A.3: The PR curves for top-5 settings of rmax for LOCI on all used
datasets, based on AUC-PR.

64

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOCI for 90 settings of parameter rmax.

(a) Domain dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOCI for 28 settings of parameter rmax.

(b) Abalone

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PR curves for LOCI for 32 settings of parameter rmax.

(c) Allhypo Thyroid

Figure A.4: The PR curves for varying values of parameters rmax for LOCI on
all used datasets.

65

Appendix B

Hyperparameter Selection
Supervised Component

0.
00

01
0

0.
00

01
7

0.
00

03
0

0.
00

05
3

0.
00

09
2

0.
00

16
1

0.
00

28
1

0.
00

48
9

0.
00

85
3

0.
01

48
7

0.
02

59
3

0.
04

52
0

0.
07

88
0

0.
13

73
8

0.
23

95
0

0.
41

75
3

0.
72

79
0

1.
26

89
6

2.
21

22
2

3.
85

66
2

6.
72

33
6

11
.7

21
02

20
.4

33
60

35
.6

22
48

62
.1

01
69

10
8.

26
36

7

18
8.

73
91

8

32
9.

03
44

6

57
3.

61
52

5

10
00

.0
00

00

gamma

0.00001

0.00002

0.00005

0.00011

0.00024

0.00053

0.00117

0.00259

0.00574

0.01269

0.02807

0.06210

0.13738

0.30392

0.67234

1.48735

3.29034

7.27895

16.10262

35.62248

78.80463

174.33288

385.66204

853.16785

1887.39182

4175.31894

9236.70857

20433.59718

45203.53656

100000.00000

C

F1 scores

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

(a) Domain dataset

0.
00

01
0

0.
00

01
7

0.
00

03
0

0.
00

05
3

0.
00

09
2

0.
00

16
1

0.
00

28
1

0.
00

48
9

0.
00

85
3

0.
01

48
7

0.
02

59
3

0.
04

52
0

0.
07

88
0

0.
13

73
8

0.
23

95
0

0.
41

75
3

0.
72

79
0

1.
26

89
6

2.
21

22
2

3.
85

66
2

6.
72

33
6

11
.7

21
02

20
.4

33
60

35
.6

22
48

62
.1

01
69

10
8.

26
36

7

18
8.

73
91

8

32
9.

03
44

6

57
3.

61
52

5

10
00

.0
00

00

gamma

0.00001

0.00002

0.00005

0.00011

0.00024

0.00053

0.00117

0.00259

0.00574

0.01269

0.02807

0.06210

0.13738

0.30392

0.67234

1.48735

3.29034

7.27895

16.10262

35.62248

78.80463

174.33288

385.66204

853.16785

1887.39182

4175.31894

9236.70857

20433.59718

45203.53656

100000.00000

C

F1 scores

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.135
0.150

(b) Abalone

0.
00

00
1

0.
00

00
2

0.
00

00
3

0.
00

00
4

0.
00

00
7

0.
00

01
1

0.
00

01
7

0.
00

02
8

0.
00

04
5

0.
00

07
3

0.
00

11
7

0.
00

18
9

0.
00

30
4

0.
00

48
9

0.
00

78
8

0.
01

26
9

0.
02

04
3

0.
03

29
0

0.
05

29
8

0.
08

53
2

0.
13

73
8

0.
22

12
2

0.
35

62
2

0.
57

36
2

0.
92

36
7

1.
48

73
5

2.
39

50
3

3.
85

66
2

6.
21

01
7

10
.0

00
00

gamma

0.00001

0.00002

0.00005

0.00011

0.00024

0.00053

0.00117

0.00259

0.00574

0.01269

0.02807

0.06210

0.13738

0.30392

0.67234

1.48735

3.29034

7.27895

16.10262

35.62248

78.80463

174.33288

385.66204

853.16785

1887.39182

4175.31894

9236.70857

20433.59718

45203.53656

100000.00000

C

F1 scores

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054

0.060

(c) Allhypo Thyroid

Figure B.1: Results of five-fold cross validated parameter grid search for SSAD
method on a logarithmic scale for parameters C and γ.

66

0.
00

00
1

0.
00

00
2

0.
00

00
5

0.
00

01
1

0.
00

02
4

0.
00

05
3

0.
00

11
7

0.
00

25
9

0.
00

57
4

0.
01

26
9

0.
02

80
7

0.
06

21
0

0.
13

73
8

0.
30

39
2

0.
67

23
4

1.
48

73
5

3.
29

03
4

7.
27

89
5

16
.1

02
62

35
.6

22
48

78
.8

04
63

17
4.

33
28

8

38
5.

66
20

4

85
3.

16
78

5

18
87

.3
91

82

41
75

.3
18

94

92
36

.7
08

57

20
43

3.
59

71
8

45
20

3.
53

65
6

10
00

00
.0

00
00

gamma

0.00001

0.00002

0.00005

0.00011

0.00024

0.00053

0.00117

0.00259

0.00574

0.01269

0.02807

0.06210

0.13738

0.30392

0.67234

1.48735

3.29034

7.27895

16.10262

35.62248

78.80463

174.33288

385.66204

853.16785

1887.39182

4175.31894

9236.70857

20433.59718

45203.53656

100000.00000

C
F1 scores

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(a) Domain dataset

0.
00

00
1

0.
00

00
2

0.
00

00
5

0.
00

01
1

0.
00

02
4

0.
00

05
3

0.
00

11
7

0.
00

25
9

0.
00

57
4

0.
01

26
9

0.
02

80
7

0.
06

21
0

0.
13

73
8

0.
30

39
2

0.
67

23
4

1.
48

73
5

3.
29

03
4

7.
27

89
5

16
.1

02
62

35
.6

22
48

78
.8

04
63

17
4.

33
28

8

38
5.

66
20

4

85
3.

16
78

5

18
87

.3
91

82

41
75

.3
18

94

92
36

.7
08

57

20
43

3.
59

71
8

45
20

3.
53

65
6

10
00

00
.0

00
00

gamma

0.00001

0.00002

0.00005

0.00011

0.00024

0.00053

0.00117

0.00259

0.00574

0.01269

0.02807

0.06210

0.13738

0.30392

0.67234

1.48735

3.29034

7.27895

16.10262

35.62248

78.80463

174.33288

385.66204

853.16785

1887.39182

4175.31894

9236.70857

20433.59718

45203.53656

100000.00000

C

F1 scores

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
0.050

(b) Abalone

0.
00

00
1

0.
00

00
2

0.
00

00
5

0.
00

01
1

0.
00

02
4

0.
00

05
3

0.
00

11
7

0.
00

25
9

0.
00

57
4

0.
01

26
9

0.
02

80
7

0.
06

21
0

0.
13

73
8

0.
30

39
2

0.
67

23
4

1.
48

73
5

3.
29

03
4

7.
27

89
5

16
.1

02
62

35
.6

22
48

78
.8

04
63

17
4.

33
28

8

38
5.

66
20

4

85
3.

16
78

5

18
87

.3
91

82

41
75

.3
18

94

92
36

.7
08

57

20
43

3.
59

71
8

45
20

3.
53

65
6

10
00

00
.0

00
00

gamma

0.00001

0.00002

0.00005

0.00011

0.00024

0.00053

0.00117

0.00259

0.00574

0.01269

0.02807

0.06210

0.13738

0.30392

0.67234

1.48735

3.29034

7.27895

16.10262

35.62248

78.80463

174.33288

385.66204

853.16785

1887.39182

4175.31894

9236.70857

20433.59718

45203.53656

100000.00000

C

F1 scores

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.1350.150

(c) Allhypo Thyroid

Figure B.2: Results of five-fold cross validated parameter grid search for C-SVC
method on a logarithmic scale for parameters C and γ.

67

Bibliography

[1] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by
active learning. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 504–509. ACM,
2006.

[2] Charu C Aggarwal. Outlier analysis. Springer Science & Business Media,
2013.

[3] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the
surprising behavior of distance metrics in high dimensional space. Springer,
2001.

[4] Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying support
vector machines to imbalanced datasets. In Machine Learning: ECML
2004, pages 39–50. Springer, 2004.

[5] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. Enhanc-
ing one-class support vector machines for unsupervised anomaly detection.
In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and
Description, pages 8–15. ACM, 2013.

[6] Vic Barnett and Toby Lewis. Outliers in statistical data, volume 3. Wiley
New York, 1994.

[7] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[8] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152. ACM, 1992.

[9] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In ACM Sigmod Record, vol-
ume 29, pages 93–104. ACM, 2000.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

68

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[11] William Chavuenet. A manual of spherical and practical astronomy. 1871.

[12] Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn
imbalanced data. University of California, Berkeley, 2004.

[13] Yixin Chen, Xin Dang, Hanxiang Peng, and Henry L Bart. Outlier de-
tection with the kernelized spatial depth function. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 31(2):288–305, 2009.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[15] Jesse Davis and Mark Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on
Machine learning, pages 233–240. ACM, 2006.

[16] Pedro Domingos. Metacost: A general method for making classifiers cost-
sensitive. In Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 155–164. ACM, 1999.

[17] Chris Drummond, Robert C Holte, et al. C4. 5, class imbalance, and
cost sensitivity: why under-sampling beats over-sampling. In Workshop on
learning from imbalanced datasets II, volume 11. Citeseer, 2003.

[18] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and
Weng-Keen Wong. Systematic construction of anomaly detection bench-
marks from real data. In Proceedings of the ACM SIGKDD workshop on
outlier detection and description, pages 16–21. ACM, 2013.

[19] Seyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles. Learning on the
border: active learning in imbalanced data classification. In Proceedings of
the sixteenth ACM conference on Conference on information and knowledge
management, pages 127–136. ACM, 2007.

[20] H Jair Escalante. A comparison of outlier detection algorithms for machine
learning. In Proceedings of the International Conference on Communica-
tions in Computing, pages 228–237. Citeseer, 2005.

[21] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple re-
sampling method for learning from imbalanced data sets. Computational
Intelligence, 20(1):18–36, 2004.

[22] Peter Filzmoser, Robert G Garrett, and Clemens Reimann. Multivariate
outlier detection in exploration geochemistry. Computers & Geosciences,
31(5):579–587, 2005.

[23] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

69

[24] Jing Gao, Haibin Cheng, and Pang-Ning Tan. Semi-supervised outlier de-
tection. In Proceedings of the 2006 ACM symposium on Applied computing,
pages 635–636. ACM, 2006.

[25] Robert G Garrett. The chi-square plot: a tool for multivariate outlier
recognition. Journal of Geochemical Exploration, 32(1):319–341, 1989.

[26] Nico Görnitz, Marius Micha Kloft, Konrad Rieck, and Ulf Brefeld. Toward
supervised anomaly detection. Journal of Artificial Intelligence Research,
2013.

[27] Frank E Grubbs. Procedures for detecting outlying observations in samples.
Technometrics, 11(1):1–21, 1969.

[28] Hongyu Guo and Herna L Viktor. Learning from imbalanced data sets with
boosting and data generation: the databoost-im approach. ACM SIGKDD
Explorations Newsletter, 6(1):30–39, 2004.

[29] Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.

[30] Victoria J Hodge and Jim Austin. A survey of outlier detection method-
ologies. Artificial Intelligence Review, 22(2):85–126, 2004.

[31] Qinghua Hu and Daren Yu. An improved clustering algorithm for infor-
mation granulation. In Fuzzy Systems and Knowledge Discovery, pages
494–504. Springer, 2005.

[32] J Janssens and E Postma. One-class classification with lof and loci: An
empirical comparison. In Proceedings of the Eighteenth Annual Belgian-
Dutch Conference on Machine Learning, pages 56–64, 2009.

[33] JHM Janssens. Outlier selection and one-class classification. PhD thesis,
Tilburg University, 2013.

[34] Richard Arnold Johnson, Dean W Wichern, et al. Applied multivariate
statistical analysis, volume 4. Prentice hall Englewood Cliffs, NJ, 1992.

[35] Theodore Johnson, Ivy Kwok, and Raymond T Ng. Fast computation of
2-dimensional depth contours. In KDD, pages 224–228. Citeseer, 1998.

[36] Edwin M Knox and Raymond T Ng. Algorithms for mining distance-based
outliers in large datasets. In Proceedings of the International Conference
on Very Large Data Bases, pages 392–403. Citeseer, 1998.

[37] Hans-Peter Kriegel, Arthur Zimek, et al. Angle-based outlier detection in
high-dimensional data. In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 444–452.
ACM, 2008.

70

[38] Pedro Larranaga and Jose A Lozano. Estimation of distribution algorithms:
A new tool for evolutionary computation, volume 2. Springer Science &
Business Media, 2002.

[39] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA., 1967.

[40] Marcus A Maloof. Learning when data sets are imbalanced and when
costs are unequal and unknown. In ICML-2003 workshop on learning from
imbalanced data sets II, volume 2, pages 2–1, 2003.

[41] David J Miller and John Browning. A mixture model and em-based al-
gorithm for class discovery, robust classification, and outlier rejection in
mixed labeled/unlabeled data sets. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 25(11):1468–1483, 2003.

[42] Tom M Mitchell. Machine learning. wcb, 1997.

[43] Tood K Moon. The expectation-maximization algorithm. Signal processing
magazine, IEEE, 13(6):47–60, 1996.

[44] Warwick J Nash. The Population Biology of Abalone (Haliotis Species) in
Tasmania: Blacklip Abalone (H. Rubra) from the North Coast and the Is-
lands of Bass Strait. Sea Fisheries Division, Marine Research Laboratories-
Taroona, Department of Primary Industry and Fisheries, Tasmania, 1994.

[45] Spiros Papadimitriou, Hiroyuki Kitagawa, Philip B Gibbons, and Christos
Faloutsos. Loci: Fast outlier detection using the local correlation integral.
In Data Engineering, 2003. Proceedings. 19th International Conference on,
pages 315–326. IEEE, 2003.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[47] Dan Pelleg and Andrew W Moore. Active learning for anomaly and rare-
category detection. In Advances in Neural Information Processing Systems,
pages 1073–1080, 2004.

[48] Clifton Phua, Vincent Lee, Kate Smith, and Ross Gayler. A comprehen-
sive survey of data mining-based fraud detection research. arXiv preprint
arXiv:1009.6119, 2010.

[49] James Pickands III. Statistical inference using extreme order statistics. the
Annals of Statistics, pages 119–131, 1975.

71

[50] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection with
unlabeled data using clustering. In In Proceedings of ACM CSS Workshop
on Data Mining Applied to Security (DMSA-2001. Citeseer, 2001.

[51] Marcel Prastawa, Elizabeth Bullitt, Sean Ho, and Guido Gerig. A brain
tumor segmentation framework based on outlier detection. Medical image
analysis, 8(3):275–283, 2004.

[52] Ronaldo C Prati, Gustavo EAPA Batista, and Maria Carolina Monard. A
study with class imbalance and random sampling for a decision tree learning
system. In Artificial Intelligence in Theory and Practice II, pages 131–140.
Springer, 2008.

[53] John Ross Quinlan, Paul J Compton, KA Horn, and Leslie Lazarus. In-
ductive knowledge acquisition: a case study. In Proceedings of the Second
Australian Conference on Applications of expert systems, pages 137–156.
Addison-Wesley Longman Publishing Co., Inc., 1987.

[54] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2015.

[55] Ida Ruts and Peter J Rousseeuw. Computing depth contours of bivariate
point clouds. Computational Statistics & Data Analysis, 23(1):153–168,
1996.

[56] Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle,
Klaus Arthur Schmid, and Arthur Zimek. A framework for clustering un-
certain data. PVLDB, 8(12):1976–1987, 2015.

[57] David W Scott. Outlier detection and clustering by partial mixture model-
ing. In COMPSTAT 2004—Proceedings in Computational Statistics, pages
453–464. Springer, 2004.

[58] Jack W Stokes, John C Platt, Joseph Kravis, and Michael Shilman. Al-
adin: Active learning of anomalies to detect intrusions. Technique Report.
Microsoft Network Security Redmond, WA, 98052, 2008.

[59] Yuchun Tang, Yan-Qing Zhang, Nitesh V Chawla, and Sven Krasser. Svms
modeling for highly imbalanced classification. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, 39(1):281–288, 2009.

[60] David MJ Tax and Robert PW Duin. Support vector domain description.
Pattern recognition letters, 20(11):1191–1199, 1999.

[61] David MJ Tax and Robert PW Duin. Support vector data description.
Machine learning, 54(1):45–66, 2004.

[62] Kai Ming Ting. Inducing cost-sensitive trees via instance weighting.
Springer, 1998.

72

[63] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. The Journal of Machine Learning
Research, 2:45–66, 2002.

[64] L. Torgo. Data Mining with R, learning with case studies. Chapman and
Hall/CRC, 2010.

[65] Mark PJ Van der Loo. Distribution based outlier detection for univariate
data. Statistics Netherlands, 10003, 2010.

[66] Seth van Hooland, Ruben Verborgh, and Max De Wilde. Cleaning data
with OpenRefine. In Adam Crymble, Patrick Burns, and Nora McGregor,
editors, The Programming Historian. August 2013.

[67] Konstantinos Veropoulos, Colin Campbell, Nello Cristianini, et al. Con-
trolling the sensitivity of support vector machines. In Proceedings of the
international joint conference on AI, pages 55–60, 1999.

[68] Zhenxia Xue, Youlin Shang, and Aifen Feng. Semi-supervised outlier detec-
tion based on fuzzy rough c-means clustering. Mathematics and Computers
in simulation, 80(9):1911–1921, 2010.

[69] Cui Zhu, Hiroyuki Kitagawa, Spiros Papadimitriou, and Christos Faloutsos.
Obe: outlier by example. In Advances in Knowledge Discovery and Data
Mining, pages 222–234. Springer, 2004.

[70] Cui Zhu, Hiroyuki Kitagawa, Spiros Papadimitriou, and Christos Faloutsos.
Outlier detection by example. Journal of Intelligent Information Systems,
36(2):217–247, 2011.

[71] Xiaojin Zhu. Semi-supervised learning literature survey. 2005.

73

	Introduction
	Motivation
	Relation to other work
	Problem Statement
	Key Contributions

	Related Work
	Unsupervised Scenario
	Probabilistic Model
	Extreme Value Model
	Subspace Model
	Proximity-based Model

	Supervised Scenario
	Fully Supervised
	Semi Supervised
	Active Learning

	Active learning for anomaly detection
	High-Level Overview
	Unsupervised Component
	Supervised Component
	Selection Mechanism
	Initial Round

	Experimental setup
	Description of Data
	Establishing Ground Truth
	Quality of Classifier
	Combining Component Outputs
	Hyperparameter Selection
	Unsupervised Component
	Supervised Component
	Parameter Settings

	Generalisability
	Learning Abilities
	Used Implementations

	Results
	Unsupervised component
	Supervised component
	Learning Abilities
	Generalisability

	Discussion
	Lacking a priori Knowledge
	Novelty of Proposed Method
	Limitations of Selection Mechanism
	Generation of Labels
	A Note on Generalisability

	Conclusion
	Hyperparameter Selection Unsupervised Component
	Hyperparameter Selection Supervised Component

