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Abstract. This paper presents a simulation-optimization approach to
strategic workforce planning based on deep reinforcement learning. A do-
main expert expresses the organization’s high-level, strategic workforce
goals over the workforce composition. A policy that optimizes these goals
is then learned in a simulation-optimization loop. Any suitable simulator
can be used, and we describe how a simulator can be derived from his-
torical data. The optimizer is driven by deep reinforcement learning and
directly optimizes for the high-level strategic goals as a result. We com-
pare the proposed approach with a linear programming-based approach
on two types of workforce goals. The first type of goal, consisting of a
target workforce, is relatively easy to optimize for but hard to specify
in practice and is called operational in this work. The second, strategic,
type of goal is a possibly non-linear combination of high-level workforce
metrics. These goals can easily be specified by domain experts but may
be hard to optimize for with existing approaches. The proposed approach
performs significantly better on the strategic goal while performing com-
parably on the operational goal for both a synthetic and a real-world
organization. Our novel approach based on deep reinforcement learn-
ing and simulation-optimization has a large potential for impact in the
workforce planning domain. It directly optimizes for an organization’s
workforce goals that may be non-linear in the workforce composition
and composed of arbitrary workforce composition metrics.

Keywords: Deep Reinforcement Learning · Optimization · Simulation
· Strategic Workforce Planning.

1 Introduction

In order to achieve their strategic goals, organizations need to have the right peo-
ple in the right place at the right time. Strategic workforce planning (SWP) is the
business process in which the required actions to meet an organization’s work-
force needs are identified [1]. SWP has been recognized as an important problem
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across sectors [4,3,5] and is expected to grow in importance with knowledge and
human capital becoming increasingly important drivers of economic growth [18].
Workforce planning helps organizations with forecasting their workforce needs
given a range of possible business scenarios and includes predicting the impact
of various programs and policies on talent attraction and retention, showing how
the impact varies across different segments of the workforce, modeling the impact
of employee attrition and movements within the organization, and quantifying
the financial impact of workforce decisions [1].

SWP problems are challenging since they require a deep understanding of
the organization’s high-level strategic goals and constraints on the one hand and
technical knowledge to express these as an optimization problem on the other.
The problem formulation should correctly capture the organization’s workforce
goals and constraints into its objective, address the aforementioned aspects of
uncertainty, and be both actionable and computationally tractable. As a result,
achieving impact with SWP typically requires careful collaboration between ex-
perts from the HR and analytics domains.

The SWP problem has attracted substantial interest from researchers as
a result. Historically, these have focused on relatively simple and specific set-
tings, e.g., problems of a relatively small scale [16], with a homogeneous work-
force [4,20], and an objective function linear in the workforce composition [9,10].
Recently, researchers have addressed some of these limitations with more ad-
vanced techniques that explicitly include uncertainty of the workforce dynam-
ics [13], that include employee attributes, such as age, skill, and position [3,6],
and that use a piece-wise linear objective [7]. Although more general than pre-
vious methods, these still rely on problem specifics to cast the organizations’
goals and constraints into a tractable optimization problem. This limits their
applicability and comes at a significant analysis and modeling burden.

In this work, we propose a generic and widely applicable approach. In our
approach, a policy that optimizes a strategic workforce objective is derived with
deep reinforcement learning (DRL). Since DRL does not depend on the specifics
of the objective, it can be defined as a non-linear combination of high-level
workforce metrics. The optimal policy is determined with DRL in a simulation-
optimization loop. The optimization step in this loop does not depend on the
internals of the simulator, so that the approach can be applied to a wide range
of simulators. We also describe how a simulator can be estimated from data
on historical workforce compositions so that only the objective and a data set
are required as inputs. Additionally, our approach is capable of handling large
problems and fine-grained decision-making as a result of the usage of neural
networks in estimating the optimal policy. Our approach improves the usability,
granularity, and quality of SWP decision support.

1.1 Related Work

The application of different simulation paradigms in finding the optimal work-
force planning decisions is very popular; see [2,15,14] and also see [1] for a dis-
cussion of simulation in workforce planning in industry. The adoption of deep
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reinforcement learning for simulation-optimization has recently become popular
in academia and industry; see [11], Pathmind and project Bonsai by Microsoft.
To the best of our knowledge, however, no studies have proposed to address
SWP with DRL, which brings various benefits to this domain: it does not re-
quire any specific domain knowledge, scales well to large problems, and makes
no assumptions on, e.g., linearity of the objective function.

This work is organized as follows. We first introduce SWP as an optimization
problem, including the modeling of the workforce dynamic and the formulation
of optimization objectives. We then introduce the simulation-optimization loop
and detail the DRL optimizer. We describe the experimental setup and results,
which show that our approach finds suitable policies for high-level objectives
for both a synthetic and real-life organization. We conclude that our approach
enables direct optimization of strategic workforce goals.

2 Strategic Workforce Planning as Optimization

In this section, we present a quantitative framework for SWP. We first detail a
descriptive model of the workforce. This model factors the total workforce into
groups of individuals with similar attributes of interest called cohorts. Attributes,
such as productivity, skills, and manager status, can be included based on the
goals and constraints of the organization. We then detail how the dynamics are
modeled. Finally, we describe how strategic workforce goals and constraints can
be formulated as optimization objectives.

2.1 Cohort Model

We define employee attributes as a set of variables Y = (Y1, . . . , Ym) so that
each employee with attributes (Y1 = y1, . . . , Ym = ym) can be described by
values (y1, . . . , ym) and all employees with the same values can be grouped into
the same cohort Ci ∈ C = {C1, . . . , Cn}. The number of cohorts n depends on
the number of attributes m and the cardinalities |Yi| of these attributes, i.e.,
n = |C| =

∏m
i=1 |Yi|. Note that n grows as a combination of attributes, so that

more fine-grained modeling results in a larger number of cohorts quickly.
We now turn to a model of the evolution of a workforce over time. Specifi-

cally, we consider discrete time steps of an arbitrary fixed length (e.g., monthly,
quarterly, or yearly) 0 < t ≤ T for some finite horizon T < ∞. At each time
point t, the number of employees for a particular cohort Ci is defined as a ran-
dom variable (r.v.) Xi,t ∈ N≥0 and the total workforce as a combination of all
cohorts Xt =

(
X(1,t), . . . , X(n,t)

)
∈ Nn

≥0. The dynamics of these so-called head-
counts can now be modeled as a Markov chain. Its state space consists of all
possible headcount compositions. We assume a scalar Xmax < ∞ for the maxi-
mum number of employees per cohort and define the state space of the Markov
chain S = {s ∈ Nn

≥0|s ≤ (Xmax)
n}.

For any organization and for any time step, we know that an individual can
either (i) leave the organization organically due to, e.g., retirement, voluntarily
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leaving etc. (ii) leave the organization as a result of a management decision, (iii)
move from one cohort to another cohort organically, (iv) be moved from one
cohort to another cohort by the organization and (v) enter the organization.
With this knowledge, the transition function can be factorized into components,
so that for every t:

Xt+1 = Xt −Ot − Lt + 1nMt − 1nM ′
t + 1nNt − 1nN ′

t +Ht, (1)

where 1n is an n-dimensional vector of ones and (i) Ot an n-dimensional r.v.
representing organic leavers per cohort, (ii) Lt an n-dimensional r.v. representing
organization-initiated leavers, (iii) Mt an n × n random matrix of employees
moving between cohorts organically, (iv) Nt an n × n random matrix of moves
between cohorts initiated by the organization, and (v) Ht an n-dimensional r.v.
of new hires. This model describes how the workforce changes over time and it
allows to easily formalize strategic workforce goals as optimization objectives as
described in the next section.

2.2 Optimizing the Cohort Model

In this section, we cast the SWP problem as an optimization problem. The
first step is to identify the actions available to the organization. We assume
that these are direct and indirect controls on the Markov chain in Equation 1.
In general, the transitions Lt, Nt, and Ht are controlled by the organization
directly. Additional controls may be in place to affect the other r.v.’s indirectly.
For example, an employee retention plan can be included to affect the attrition
Ot. The cohort model supports both direct and indirect controls, and these can
be included based on the organization’s needs.

The organization should take those actions that result in the most suitable
workforce at every time step. We here formalize the organization’s actions as
some set A and a particular action at time t as At ∈ A and refer the reader to
Section 4 for examples. We assume that each workforce composition Xt and At

can be assigned a numerical value corresponding to the particular SWP goal of
the organization with some function r : S × A → R. The objective, now, is to
maximize this value over time by sampling appropriate states and actions in the
system in Equation 1 until some horizon T :

A∗ = argmax
A0,...,AT

E

[
T∑

t=0

r(Xt+1, At)

]
s.t. Xt+1 = Xt −Ot − Lt + 1nMt − 1nM ′

t + 1nNt − 1nN ′
t +Ht,

and Ot, Lt,Mt, Nt, Ht dependent on At

for t = 0, . . . , T, and a given X0.

(2)

Having defined the general optimization objective, we now turn to exam-
ples of suitable reward functions. A reward function should reflect the strategic
workforce goals of the organization accurately. Because of the strategic nature
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of SWP, a goal is usually composed of multiple terms. General terms such as
headcount and budget, SWP-specific terms such as average span of control4,
job level5 and manager status, and finally, organization-specific metrics such as
productivity, skills, and diversity may all be included.

Strategic Workforce Goals The example strategic workforce goal is com-
posed of three components, here presented by decreasing importance. The pri-
mary component consists of bounds for headcounts for each cohort. The second
component contains a target average span of control across the organization. In
general, such a target span of control is attained by multiple workforce compo-
sitions. The third component, therefore, specifies that minimal salary costs are
preferred. We formalize this strategic goal by formalizing each component and
then combining the components in an overall objective.

To formalize the objective based on headcount bounds, we penalize cohorts
that are out of bounds:

rb(Xt) := −
n∑

i=1

1{Xi,t /∈[ℓi,ui]}, (3)

where ℓ, u ∈ Nn
≥0 are lower and upper bounds for all n cohorts. Next, we define a

component for achieving the target span of control. It is similar to the objective
for target headcounts in Equation (9):

rsoc(Xt) := exp

(
−αsoc (soc(Xt)−Gsoc)

2

G2
soc

)
, (4)

where Gsoc > 0 is a target average span of control, αsoc > 0 a precision pa-
rameter, and soc(Xt) a function that returns the average span of control for Xt:

soc(Xt) :=
X(n/2+1,t) + · · ·+X(n,t)

X(1,t) + · · ·+X(n/2,t)
. (5)

The third and final component can be formalized based on a function sal(Xt)
that returns the estimated total salary cost for a workforce Xt. This final com-
ponent has the lowest priority. Therefore, we only assign a positive value based
on salary if the span of control component is sufficient, as expressed by a lower
bound ℓsoc ∈ [0, 1]:

rsal(Xt) :=

{
r′sal(Xt), if rsoc(Xt) > ℓsoc,

0, otherwise,
(6)

for a salary normalized to [0, 1] based on the cohort bounds ℓ, u:

r′sal(Xt) := clip

(
sal(Xt) + sal(ℓ)
sal(ℓ)− sal(u)

, 0, 1

)
. (7)

4 The average number of direct reports of managers in the organization.
5 A metric to express responsibilities and expectations of a role in the organization,

usually associated with compensation in some way.
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The strategic objective is composed of the sub goals in Equations (3)-(6). We
combine the components to reflect all sub goals states earlier:

rs(Xt) := rb(Xt) + rsoc(Xt) + rsal(Xt). (8)

The simulation-optimization approach proposed in this work targets the direct
optimization of objectives that reflect an organization’s strategic workforce goals
and that may be non-linear and composed of arbitrary workforce metrics.

Operational Workforce Goals Another type of workforce goal is to meet
a particular known demand for employees in each cohort. This type of goal is
relatively easy to optimize for but hard to specify in practice. For this goal,
a reward can be assigned based on a distance between the current workforce
Xt and the known target composition X∗ = (X∗

1 , . . . , X
∗
n) for all n cohorts. To

ensure that the cohorts contribute uniformly to this reward, headcounts need to
be scaled to [0, 1]. Now, the following rewards an observed headcount Xi,t for a
single cohort i based on its target X∗

i :

rc(Xi,t) :=

exp

(
−α(Xi,t−X∗

i )
2

(X∗
i )

2

)
, if X∗

i > 0,

exp
(
−αX2

i,t

)
, if X∗

i = 0,
(9)

where the so-called precision parameter α > 0 specifies how strictly to penalize
sub-optimal headcounts. A simple operational reward averages over all n cohorts:

ro(Xt) :=
1

n

n∑
i=1

rc(Xi,t), (10)

These operational workforce goals are generally easy to optimize for using es-
tablished optimization techniques since they can be cast as linear optimization
problems. However, defining the required headcounts for all cohorts to meet
high-level workforce goals is very hard in practice.

3 Simulation-Optimization with Deep Reinforcement
Learning

We propose a simulation-optimization loop for solving SWP problems. Figure 1
contains a visualization of this loop. First, the user specifies the strategic work-
force goals of the organization as a reward function to maximize. This function
may be any arbitrary, e.g., a non-linear function defined over a cohort represen-
tation of the workforce. Next, a policy is learned by a DRL agent by interacting
with a simulator. This simulator can be any suitable black-box simulator that
outputs a cohort representation of the workforce and can take into account the
decisions made by the agent. By using DRL for optimization, the strategic goals
are optimized for directly, and, hence, the resulting policy informs the user in
taking the right workforce decisions for their strategic workforce goals. If histor-
ical data of the workforce is available, then this simulator can be learned from
data as described in Section 3.2.
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Fig. 1. Overview of the simulation-optimization approach. A user specifies the orga-
nization’s strategic workforce goal. A black-box workforce simulator is then used to
find a policy that directly optimizes for the goal with DRL. This policy helps the user
making informed workforce decisions.

3.1 Deep Reinforcement Learning for Workforce Planning

Formally, we cast the SWP problem as a Markov decision process (MDP)
⟨S,A,P, r, γ⟩, where S is a state space, A an action space, P : S×A×S → [0, 1]
a transition function, r : S ×A → R a reward function, and γ ∈ (0, 1] a discount
factor to balance immediate and future rewards. The decisions of the agent are
defined by its policy πθ : S × A → [0, 1], which depends on a parameter vector
θ which can, e.g., be a neural network. The goal of the agent is to maximize
the expected discounted return J(θ) := Eπθ

[∑T−1
t=0 γtrt+1

]
, which can be done

by tuning parameters θ with an algorithm that alternates simulating experience
in the environment and optimizing the policy. Here rt+1 = r(st, at) and Eπθ

indicates that st+1 ∼ P(·, at, st) and at ∼ πθ(·|st).
In the proposed framework, the state space of the MDP is equal to the state

space of the Markov chain over headcounts, i.e., S = {s ∈ Nn
≥0|s ≤ (Xmax)

n}.
The optimization algorithm uses a neural network to evaluate the value of each
state. To help the convergence of the network and significantly reduce training
time, the inputs to the network are normalized. Hence, we implement the state
space of the MDP as a continuous space Ŝ = [0, 1]n, where states are defined as
st =

(
X1,t

Xmax
1

, . . . ,
Xn,t

Xmax
n

)
for training. The action space is given by the controls

over the workforce as described in Section 2, for example, a multi-discrete set of
numbers of employees that enter or leave the organization for each cohort. For
the purposes of optimization, the dynamic model P is assumed to be unknown so
that any suitable simulator can be used. The reward function is defined by an end
user based on the organization’s strategic workforce goals. It can be composed
of arbitrary and non-linear workforce metrics of interest to the organization, see
Section 2.2 for details and examples.
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In the optimization step a policy is updated to optimize the given objec-
tive. This update is performed by approximate gradient ascent on θ, i.e., it-
eratively update θk+1 = θk + η∇̂θJ(θ). The gradient ∇θJ(θ) is estimated by
Êt

[
∇θ log πθ(at|st)Ât

]
, where Êt denotes an empirical estimate over a batch of

samples collected over time and Ât is an estimator of the advantage function.
While our approach is generic to various optimization algorithms, we propose
to use Proximal Policy Optimization (PPO) as it has shown to be suitable in
high-dimensional settings with non-linear rewards [19].

3.2 Simulating the Workforce

This section details how the dynamics of a cohort model from Section 2.1 can
be estimated from data. Estimation is necessary for two reasons. Firstly, the
dynamics may simply not be available to the organization. Secondly, it may be
problematic to fully elaborate the dynamics up-front due to the complexity of the
problem. Specifically, the size of the state space of the cohort model Markov chain
grows exponentially in the number of cohorts. As a result, it becomes infeasible to
analytically define it fully for reasonably large organizations.6 Hence, we estimate
the dynamics from data with simplifications that apply to the cohort model.

In many cases, Equation (1) can be simplified by assuming limited control
of the workforce by management. For example, if we only model management-
controlled hires and leavers, Nt becomes equal to the zero matrix and At :=
Ht − Lt for the combined movement of hires and leavers by the organization.
The part of the transition function that is out of management control is now
given by Xt+1 = Xt−Ot+1Mt−1M ′

t . Note that the diagonal entries of Mt can be
chosen arbitrary, since (Mt −M ′

t)i,i = 0 for all i = 1, . . . , n. By realizing that the
numbers of employees that remain in cohort i is equal to the headcount of cohort
i minus the number of employees that move to any other cohort or organically
leave the organization, we may set Mi,i,t = Xi,t −

∑n
j=1,j ̸=i M

′
i,j,t − Oi,t, or

Xt = 1M ′
t + Ot. It follows that we can then simply write Xt+1 = 1Mt for the

stochastic dynamics of the cohort model in general.
We observe that all employees within a certain cohort are indistinguishable

for the purposes of SWP. Hence, approximation of the dynamics of Equation (1)
at cohort level is sufficient for the purposes of this work. We, therefore, model
the movement of employees between cohorts based on the attributes that de-
scribe the cohorts. We define the transition probability matrix P (t) ∈ [0, 1]n×n

by letting pi,j(t) be the probability that an employee moves from cohort i at
time t to cohort j at time t + 1. We additionally assume time-homogeneous
transition probabilities, i.e., P (t) ≡ P . Under these assumptions, the rows of
the random matrix Mt follow a multinomial distribution, i.e., for i = 1, . . . , n,
(Mi,1,t, . . . ,Mi,n,t) ∼ Mult (Xi,t, Pi), where Pi denotes the i-th row of P .

The transition probability matrix P can be estimated from data that takes
record of the cohorts of individual employees over a time period t = 1, . . . , T .
6 For a model with n = 30 cohorts and Xmax = 100 maximum employees per cohort,

the number of transitions in the Markov chain is |S ×S| =
∏n

i=1(Smax+1)2 ≈ 10120.
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Let mi,j,t denote the number of employees that are in cohort i at time t− 1 and
in cohort j at time t. Then the maximum likelihood estimator of pi,j is

p̂i,j =

∑T
t=1 mi,j,t∑T
t=1 Xi,t

. (11)

For any time step t and action At, the dynamics of the workforce over time
can now be simulated by sampling the movement matrix Mt from the multino-
mial distribution described above and computing

Xt+1 = 1nMt +At. (12)

4 Experimental Setup

This section details the experimental setup, which was designed to answer the
following research questions:

1. How does the proposed simulation-optimization approach perform,
(a) on an operational workforce objective?
(b) on a strategic workforce objective?
(c) for a varying employee mobility?

2. Are firing constraints best implemented with a masked policy or an updated
objective (penalty for illegal fires)?

We compare the results on a baseline based on linear programming (LP) pro-
posed recently [6]. We evaluate these approaches in two cases. The first is a syn-
thetic organization, and the second is a real-life use case from an international
bank to validate the results in practice. We first describe the overall setup, then
the baseline, detail the organizations, and include implementation details.7

To investigate research question 1a and 1b, we train a reinforcement learning
agent for both the operational and strategic tasks in Equation (9) and Equa-
tion (8). We evaluate both the trained agent and the heuristic baseline described
in Section 4.1 and compare the performance based on the average reward metric,
in the manner as described in Section 4.2.

4.1 Baseline

We devise a baseline based on linear programming to compare the performance
of the proposed simulation-optimization approach. This baseline was proposed
in [6] and makes a number of additional assumptions that allow for efficient
solving of the SWP problem. We describe this baseline in detail in this section.

Due to the size of the state space of the Markov chain that describes the
workforce dynamics, this stochastic model cannot be used directly with a linear
solver. Therefore, we consider a deterministic approximation of Equation (12), by
7 Code and data for hypothetical use case available at https://github.com/ysmit933/

swp-with-drl-release. Real-life use case data will be made available upon request.

https://github.com/ysmit933/swp-with-drl-release
https://github.com/ysmit933/swp-with-drl-release
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replacing the random variables involved with their expectation. This operation,
known as mean-field approximation, is justified for large-scale organizations as
a result of the functional law of large numbers; see, e.g., [6]. For Equation (12)
we obtain

Xt+1 ≈ E [1Mt +At] = XtP·,i +At, (13)

where P·,i denotes the i-th column of the transition probability matrix P . Addi-
tionally, we optimize for one time step at a time instead of the whole trajectory
t = 0, . . . , T . This is reasonable when the rewards do not depend on time and are
given at each time step. In that case, there are no situations where it is required
to sacrifice short-term gains for long-term profit.

Consider the target level reward defined in Equation (9) and assume for sim-
plicity that X∗

i > 0 for all i = 1, . . . , n. Under the aforementioned assumptions,
this version of the SWP problem is given by: find

A∗
t = argmax

At

1

n

n∑
i=1

exp

(
−α(Xi,t+1 −X∗

i )
2

(X∗
i )

2

)
, (14)

such that Xi,t+1 =
∑n

j=1 pjiXj,t + Ai,t for t = 1, . . . , T . Substituting the latter
expression in the former, and by noting that each term of the sum is maximized
when the term in the exponential is equal to zero, we see that A∗

i,t = X∗
i −∑n

j=1 pjiXj,t. The optimal continuous actions are then mapped to the discrete
set of possible hiring options A = A1×· · ·×An. Hence, the decision rule becomes

A∗
i,t = ΠAi

X∗
i −

n∑
j=1

pjiXj,t

 , (15)

where ΠAi
(a) := argmina′∈Ai

|a− a′|.
To develop a heuristic for the combined reward function, we make the same

assumptions as for the target level heuristic. We then consider the state that
yields the highest immediate reward, given by X∗ = argmaxx∈S r(x). We use
this as a target level to aim for by applying the target level heuristic Equa-
tion (15).

4.2 Training Setup

The reinforcement learning agent is trained for a maximum number of training
steps Tmax specified by the user. At the start of each episode, a random starting
state in the neighborhood of X0 is generated to ensure sufficient exploration
of all relevant parts of the state space. This is done by uniformly sampling
a state from the interval [(1− β)Xi(0)/X

max
i , (1 + β)Xi, 0/X

max
i ], where β ∈

[0, 1] determines the random spread across the state space. The episode ends
after T time steps, at which point the environment resets to a new random
starting state. After each T eval number of time steps, the agent is evaluated on
an evaluation environment, which is identical to the training environment except
for a deterministic start at X0 and the best performing agent is stored.
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When the training process has terminated, we test the trained model
on the evaluation environment with a fixed starting state (as a default
for 1,000 episodes) and collect several metrics to assess the quality of
the model. In particular, during an episode of T time steps, we collect
the average reward 1

T

∑T
t=1 r(Xt) and the number of constraint violations∑T

t=1

∑n
i=1 1{Ai(t) is illegal}.

4.3 Hypothetical Organization

For the hypothetical organization, we consider a model with four cohorts, la-
beled by M1, M2, C1, and C2 (two cohorts of managers and two cohorts of
contributors). We suppose the probability transition matrix is given by

P =


0.98 0 0 0
0.01 0.93 0 0
0 0.04 0.92 0.005
0 0.01 0.01 0.96

 ,

and we let X0 = (20, 50, 100, 300) be the starting state. The hiring options are
set to A1 = {−2,−1, 0, 1, 2}, A2 = {−5,−1, 0, 1, 5}, A3 = {−10,−2, 0, 2, 10},
and A4 = {−25,−5, 0, 5, 25}. The maximum cohort sizes are Xmax = 2X0, the
random starting state percentage is β = 0.25, the time horizon is T = 60, and
the salary costs are set to Csal = (10000, 6000, 4000, 2000). The target level
objective is X∗ = X0 (and remain at the same levels as the starting state), with
a default precision of α = 10. The combined reward parameters are given by
ℓ = 0.75X0, u = 1.25X0, Gsoc = 7, ℓsoc = 0.9.

On top of the transitions introduced before, we vary the employee mobility
in order to answer research question 1c. In order to answer this question, we
evaluate the approach on transition matrices

Pℓ =


1− ℓ 0 0 0
ℓ/2 1− ℓ 0 0
0 ℓ/2 1− ℓ 0
0 0 ℓ/2 1− ℓ

 ,

for mobility rates ℓ ∈ {0, 0.01, . . . , 0.1}. For each of these environments, and for
both the operational and strategic tasks, a reinforcement learning agent is trained
and evaluated. Next, its performance, based on the average reward obtained, is
compared to the heuristic baseline.

4.4 Real-life use case

To investigate the performance of our solution method on a real-life use case, we
use the following model based on actual headcounts in one particular department
of the Bank. The 14,105 employees of this segment of the organization are divided
into cohorts based on manager status (manager or contributor) and based on five
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Fig. 2. Normalized cumulative training rewards.

distinct job levels, resulting in a cohort model consisting of n = 10 cohorts. We
label the cohorts as Manager-1, . . ., Manager-5, Contributor-1, . . ., Contributor-
5. The transition probabilities between these cohorts are estimated based on
monthly employee data for a period of 48 months. For both tasks, starting state
X0 is set to the workforce at the beginning of the period and target state X∗ to
the workforce at the end of the period for the operational goal.

For the strategic goal, we use cohort bounds ℓi = 0.75Xi(0) and ui =
1.25Xi(0), and the goal for span of control is Gsoc = 7, with ℓsoc = 0.9. Costs
associated with salary and management initiated hires and leavers were set in
collaboration with an expert in the organization. The hiring options were cho-
sen based on the cohort sizes and include the option to hire or fire zero, a few,
many, or a moderate number of employees. The maximum number of employ-
ees that could be hired or fired was roughly ten percent of the starting cohort
size. For example, the hiring options for cohort Manager-1 were given by the set
A1 = {−25,−5,−1, 0, 1, 5, 25}.

To investigate research question 2, we implement three methods to constrain
the choices for management-initiated leavers. The first method is a masked pol-
icy, for which the illegal actions are removed from the action space by setting the
corresponding action probabilities to zero. For the second method, the agent re-
ceives a large negative reward for selecting an illegal action. Finally, we constrain
the agent to hires only, i.e. in which all leaving employees do so organically. We
then train reinforcement learning agents for both the operational and strate-
gic tasks and compare the performance of the unconstrained agent, the masked
agent, the penalty-receiving agent, the no-fire agent, and the baseline heuristic.

5 Results

In this section, we look at all results associated with research questions 1a-
2 presented in the previous section. We first look at the convergence of the
proposed approach in Figure 2 and find that the proposed SO approach converges
quickly. Next, we compare the resulting policies with an LP baseline on a test
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Table 1. Average normalized cumulative rewards and 95% confidence interval for both
tasks on both organizations. Bold denotes significant best per task (p = 0.99).

Synthetic Real-life
Operational Strategic Operational Strategic

LP 0.98± 0.030 0.41± 0.374 0.99± 0.010 0.12± 0.106
SO (ours) 0.94± 0.033 0.83± 0.213 0.92± 0.015 0.98± 0.026
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Fig. 3. Normalized cumulative rewards for varying mobility rates.

set. Table 1 shows that the proposed approach performs close to the optimum
of the LP baseline on the operational objective and significantly outperforms
the baseline on the strategic objective. We move on to research question 1c by
looking at the effect of increasing the employee mobility in Figure 3. It shows that
the the proposed SO approach is robust against a wide range of mobility levels
and that its benefits increase with increasing workforce mobility. The proposed
approach shows to be more robust to the stochastic nature of SWP for this
nonlinear optimization objective than the LP baseline.

Finally, we compare our approach in a setting with constraints on the orga-
nization’s control of leavers in Tables 2. Here, we find that we can effectively
take the organization’s constraints into account using either masking, with a
negative reward (penalty) or by only including hires in the action space. Out
of these, the ‘only hires’ variant yields the best results with respect to reward
and constraint adherence, with rewards close to its unconstrained counterparts
without any constraint violations.

6 Discussion

In this work, we have presented a simulation-optimization approach to strategic
workforce planning. The approach optimizes workforce decisions with DRL by
interacting with a simulator. Any suitable simulator can be used because the
optimization step does not depend on its internals. We propose to use a Markov
chain simulator learned from historical data. By doing so, the full loop only
requires a data set of historical workforce compositions and the organization’s
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Table 2. Average normalized cumulative rewards and constraint violations (% of total
decisions), with 95% confidence intervals. Bold denotes significant best (p = 0.99).

Operational Strategic
Reward # Violations (%) Reward # Violations (%)

LP 0.99± 0.010 16.83± 3.05 0.12± 0.106 13.84± 2.96
Unconstrained 0.92± 0.015 6.94± 1.56 0.98± 0.026 21.72± 4.39
Masked 0.74± 0.030 0.00± 0.00 0.75± 0.135 0.00± 0.00
Penalty 0.87± 0.046 0.34± 0.07 0.74± 0.060 0.00± 0.00
Only hires 0.79± 0.041 0.00± 0.00 0.94± 0.061 0.00± 0.00

objective as inputs. These objectives may be composed of arbitrary workforce
metrics of interest that may be non-linear in the workforce composition. The
approach optimizes these objectives directly, so that the resulting policy can
easily be used to ensure a high impact of the SWP efforts.

We have evaluated the proposed approach on a synthetic and a real-world
organization and found that it converges quickly. More so, we compared the qual-
ity of the obtained policy to a baseline from the literature. In this comparison,
we first targeted an objective composed of workforce metrics. Such objectives
are easy to define and accurately reflect the organization’s strategic goals. We
found that our approach significantly outperforms the baseline on this strategic
objective and that the difference grows as mobility of the workforce increases.
We secondly targeted an operational goal, in which the optimal workforce com-
position is known up-front. Such goals are easy to optimize for with established
optimization approaches but hard to define in practice. Our approach performed
close to the baseline in this setting. We additionally showed how the approach
can take into account realistic constraints by limiting the ability of the organi-
zation to control leavers in the organization and found that removing the ability
to do so has a very limited impact on overall performance.

We have shown that the proposed simulation-optimization approach is suit-
able for SWP. Additionally, it opens up various avenues for future work. Firstly,
the approach is capable of optimizing for strategic objectives composed of ar-
bitrary workforce metrics. It would be interesting to extend the approach with
multi-objective reinforcement learning in order to compute a set of Pareto op-
timal policies [17]. This will increase the organization’s understanding of the
trade-offs involved and allow them to fine-tune their strategy. Secondly, the ap-
proach currently finds a policy that is optimal on average. While this is suitable
for many use-cases, there may be some organizations that prefer a probabilis-
tic guarantee on the minimum number of employees to, e.g., meet service level
agreements. Here, risk-sensitive DRL can be employed instead of regular DRL [8].
Additionally, organizational constraints can be formalized and used within ap-
proaches that guarantee safety of the resulting policy [12]. We believe that, with
the proposed approach, these challenging and interesting research directions that
will further increase the impact of SWP have become feasible in practice.
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